In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$5 \cdot 2^{\operatorname{acot}{\left(x \right)}} \cos{\left(5 x \right)} - \frac{2^{\operatorname{acot}{\left(x \right)}} \log{\left(2 \right)} \sin{\left(5 x \right)}}{x^{2} + 1} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 12.2520278702219$$
$$x_{2} = -19.792104315915$$
$$x_{3} = 14.1370289022608$$
$$x_{4} = -7.85442388901902$$
$$x_{5} = 81.9955641354391$$
$$x_{6} = -70.0575218229581$$
$$x_{7} = 21.0486083395372$$
$$x_{8} = -71.9424771230855$$
$$x_{9} = 34.243336299603$$
$$x_{10} = -60.0044273819258$$
$$x_{11} = 76.3406967256093$$
$$x_{12} = -43.6681524169898$$
$$x_{13} = 36.1282942907824$$
$$x_{14} = 2.19434789945819$$
$$x_{15} = 4.08250110523468$$
$$x_{16} = 48.066355604513$$
$$x_{17} = 7.22514196736028$$
$$x_{18} = 24.1902161322856$$
$$x_{19} = -50.5796525561773$$
$$x_{20} = 54.3495435239968$$
$$x_{21} = -103.358400898199$$
$$x_{22} = -61.8893825124058$$
$$x_{23} = 56.2344997344481$$
$$x_{24} = 88.9070685894122$$
$$x_{25} = -29.8451613012199$$
$$x_{26} = -38.0132902824965$$
$$x_{27} = -14.137304974683$$
$$x_{28} = 39.8982092943127$$
$$x_{29} = -95.8185789540142$$
$$x_{30} = 0.288704878724942$$
$$x_{31} = 92.0486614782868$$
$$x_{32} = 93.9336172004219$$
$$x_{33} = -36.128336741733$$
$$x_{34} = 80.1106083469975$$
$$x_{35} = 46.1813990136254$$
$$x_{36} = -11.624096505875$$
$$x_{37} = 65.0309613747656$$
$$x_{38} = 41.7831664206562$$
$$x_{39} = 78.2256525441992$$
$$x_{40} = -21.6770481889691$$
$$x_{41} = -39.8982441068377$$
$$x_{42} = 5.9682689261015$$
$$x_{43} = -49.9513342996013$$
$$x_{44} = -97.703534430795$$
$$x_{45} = -63.7743376832009$$
$$x_{46} = -9.73922648158337$$
$$x_{47} = -5.9697827840821$$
$$x_{48} = 32.3583778776069$$
$$x_{49} = 58.1194558857455$$
$$x_{50} = 17.9069919293091$$
$$x_{51} = 71.9424664113254$$
$$x_{52} = -92.0486680220746$$
$$x_{53} = 100.216802889184$$
$$x_{54} = 90.163705747916$$
$$x_{55} = -381.703507601456$$
$$x_{56} = -0.956925542610824$$
$$x_{57} = -53.7212439801803$$
$$x_{58} = -53.0929256780349$$
$$x_{59} = -69.4292033949059$$
$$x_{60} = -85.7654832117861$$
$$x_{61} = -73.8274324452886$$
$$x_{62} = -93.9336234842473$$
$$x_{63} = 68.1725546184145$$
$$x_{64} = -26.0752597431184$$
$$x_{65} = 16.0220149456067$$
$$x_{66} = 83.8805199107995$$
$$x_{67} = -80.1106169860811$$
$$x_{68} = -16.0222301181307$$
$$x_{69} = 49.9513120845443$$
$$x_{70} = 26.0751783062182$$
$$x_{71} = -76.9690246922423$$
$$x_{72} = 70.0575105271449$$
$$x_{73} = 38.0132519343378$$
$$x_{74} = -65.6592928897506$$
$$x_{75} = -51.8362890989184$$
$$x_{76} = 27.9601391966996$$
$$x_{77} = 10.367000159236$$
$$x_{78} = -83.8805277908947$$
$$x_{79} = 98.3318471901991$$
$$x_{80} = 66.2875986823035$$
$$x_{81} = 88.2787500085987$$
$$x_{82} = -87.6504386436056$$
$$x_{83} = -31.7301133125533$$
$$x_{84} = -75.7123877873973$$
$$x_{85} = -48.0663795953227$$
$$x_{86} = 61.8893680390286$$
$$x_{87} = -81.9955723819473$$
$$x_{88} = -58.1194722970723$$
$$x_{89} = -41.7831981648082$$
$$x_{90} = 22.3052522245671$$
$$x_{91} = 72.5707850343669$$
$$x_{92} = 44.2964422926316$$
$$x_{93} = -4.08563752177751$$
$$x_{94} = -27.9602100370195$$
$$x_{95} = -17.9071643199601$$
$$x_{96} = -33.6150659084925$$
$$x_{97} = 60.0044119852004$$
$$x_{98} = -0.338901775254251$$
The values of the extrema at the points:
(12.252027870221896, -1.05807215521277)
(-19.792104315915044, 0.965613425069861)
(14.13702890226082, 1.05016662476151)
(-7.854423889019023, -0.915962849245845)
(81.99556413543907, 1.00848888033338)
(-70.05752182295805, 0.990155476880893)
(21.04860833953717, -1.03345338269864)
(-71.9424771230855, -0.990412137904529)
(34.24333629960299, 1.02044219108894)
(-60.004427381925794, 0.988515919196205)
(76.34069672560932, -1.00912047570885)
(-43.66815241698978, 0.984254981133367)
(36.128294290782385, -1.01936594620173)
(2.194347899458193, -1.3446097808291)
(4.082501105234678, 1.18113485380654)
(48.066355604513014, 1.01452299791628)
(7.225141967360282, -1.10001785215559)
(24.190216132285567, 1.02905169778141)
(-50.57965255617731, -0.986391161113446)
(54.349543523996836, 1.01283371940802)
(-103.35840089819906, -0.99331639538537)
(-61.88938251240584, -0.988863671662468)
(56.23449973444807, -1.01240097538847)
(88.90706858941216, -1.00782645016034)
(-29.84516130121995, 0.977051317723769)
(-38.01329028249655, -0.98193502580247)
(-14.137304974682984, -0.952230296384834)
(39.898209294312686, -1.01752097179299)
(-95.81857895401419, -0.9927924088039)
(0.288704878724942, 2.42505555198911)
(92.0486614782868, 1.00755835037893)
(93.9336172004219, -1.00740612914916)
(-36.128336741733015, 0.981001979700351)
(80.11060834699747, -1.00868946344935)
(46.18139901362537, -1.01512005004677)
(-11.624096505874975, -0.94225036255822)
(65.03096137476564, -1.01071488274638)
(41.78316642065618, 1.01672429070752)
(78.22565254419919, 1.00889975450513)
(-21.677048188969135, -0.968551641768527)
(-39.89824410683771, 0.982780734054391)
(5.968268926101499, -1.1219437698845)
(-49.95133429960127, 0.986221210678361)
(-97.70353443079502, 0.992930959572939)
(-63.77433768320094, 0.989190984254599)
(-9.739226481583373, 0.931533462178175)
(-5.969782784082104, 0.891323032921505)
(32.35837787760692, -1.02164505316667)
(58.11945588574545, 1.01199645997223)
(17.906991929309118, 1.03942526502092)
(71.94246641132544, 1.00968067983586)
(-92.04866802207461, -0.992498349987912)
(100.21680288918364, -1.00694021952127)
(90.16370574791597, -1.00771695995662)
(-381.7035076014561, 0.99818572108688)
(-0.9569255426108237, 0.569918099668127)
(-53.72124398018026, 0.987181687879379)
(-53.09292567803487, -0.987031015269614)
(-69.42920339490585, -0.990066842329396)
(-85.76548321178613, -0.991951043994481)
(-73.82743244528864, 0.990655756825763)
(-93.9336234842473, 0.992648318599545)
(68.17255461841451, 1.01021866807885)
(-26.075259743118448, 0.973780304431222)
(16.022014945606745, -1.04415295032884)
(83.88051991079955, -1.008297348118)
(-80.11061698608106, 0.991385393326929)
(-16.022230118130654, 0.957714374177887)
(49.95131208454428, -1.01397130000539)
(26.075178306218156, -1.02692572123226)
(-76.96902469224233, -0.99103539606095)
(70.05751052714491, -1.00994240212415)
(38.01325193433779, 1.01839733069293)
(-65.65929288975057, -0.989499607464085)
(-51.836289098918435, -0.98671878927279)
(27.96013919669959, 1.02508954569211)
(10.36700015923604, 1.06892544311491)
(-83.88052779089466, 0.991770931714354)
(98.33184719019911, 1.00707371920741)
(66.28759868230352, -1.01051072450733)
(88.2787500085987, 1.00788236863702)
(-87.65043864360563, 0.992123441171333)
(-31.73011331255335, -0.978398848786504)
(-75.7123877873973, -0.990887303041292)
(-48.066379595322694, -0.985684903793344)
(61.88936803902863, 1.01126174412703)
(-81.99557238194731, -0.991582574608515)
(-58.11947229707227, -0.988145750737867)
(-41.78319816480822, -0.983550816517019)
(22.30525222456711, -1.03154190750363)
(72.57078503436693, -1.00959647424186)
(44.29644229263163, 1.01576828779445)
(-4.085637521777506, -0.846695432297942)
(-27.960210037019475, -0.975524563260983)
(-17.90716431996009, -0.96207030884588)
(-33.615065908492504, 0.979596954857131)
(60.00441198520036, -1.01161749857782)
(-0.3389017752542513, -0.418961352736205)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
$$x_{1} = 12.2520278702219$$
$$x_{2} = -7.85442388901902$$
$$x_{3} = 21.0486083395372$$
$$x_{4} = -71.9424771230855$$
$$x_{5} = 76.3406967256093$$
$$x_{6} = 36.1282942907824$$
$$x_{7} = 2.19434789945819$$
$$x_{8} = 7.22514196736028$$
$$x_{9} = -50.5796525561773$$
$$x_{10} = -103.358400898199$$
$$x_{11} = -61.8893825124058$$
$$x_{12} = 56.2344997344481$$
$$x_{13} = 88.9070685894122$$
$$x_{14} = -38.0132902824965$$
$$x_{15} = -14.137304974683$$
$$x_{16} = 39.8982092943127$$
$$x_{17} = -95.8185789540142$$
$$x_{18} = 93.9336172004219$$
$$x_{19} = 80.1106083469975$$
$$x_{20} = 46.1813990136254$$
$$x_{21} = -11.624096505875$$
$$x_{22} = 65.0309613747656$$
$$x_{23} = -21.6770481889691$$
$$x_{24} = 5.9682689261015$$
$$x_{25} = 32.3583778776069$$
$$x_{26} = -92.0486680220746$$
$$x_{27} = 100.216802889184$$
$$x_{28} = 90.163705747916$$
$$x_{29} = -53.0929256780349$$
$$x_{30} = -69.4292033949059$$
$$x_{31} = -85.7654832117861$$
$$x_{32} = 16.0220149456067$$
$$x_{33} = 83.8805199107995$$
$$x_{34} = 49.9513120845443$$
$$x_{35} = 26.0751783062182$$
$$x_{36} = -76.9690246922423$$
$$x_{37} = 70.0575105271449$$
$$x_{38} = -65.6592928897506$$
$$x_{39} = -51.8362890989184$$
$$x_{40} = 66.2875986823035$$
$$x_{41} = -31.7301133125533$$
$$x_{42} = -75.7123877873973$$
$$x_{43} = -48.0663795953227$$
$$x_{44} = -81.9955723819473$$
$$x_{45} = -58.1194722970723$$
$$x_{46} = -41.7831981648082$$
$$x_{47} = 22.3052522245671$$
$$x_{48} = 72.5707850343669$$
$$x_{49} = -4.08563752177751$$
$$x_{50} = -27.9602100370195$$
$$x_{51} = -17.9071643199601$$
$$x_{52} = 60.0044119852004$$
$$x_{53} = -0.338901775254251$$
Maxima of the function at points:
$$x_{53} = -19.792104315915$$
$$x_{53} = 14.1370289022608$$
$$x_{53} = 81.9955641354391$$
$$x_{53} = -70.0575218229581$$
$$x_{53} = 34.243336299603$$
$$x_{53} = -60.0044273819258$$
$$x_{53} = -43.6681524169898$$
$$x_{53} = 4.08250110523468$$
$$x_{53} = 48.066355604513$$
$$x_{53} = 24.1902161322856$$
$$x_{53} = 54.3495435239968$$
$$x_{53} = -29.8451613012199$$
$$x_{53} = 0.288704878724942$$
$$x_{53} = 92.0486614782868$$
$$x_{53} = -36.128336741733$$
$$x_{53} = 41.7831664206562$$
$$x_{53} = 78.2256525441992$$
$$x_{53} = -39.8982441068377$$
$$x_{53} = -49.9513342996013$$
$$x_{53} = -97.703534430795$$
$$x_{53} = -63.7743376832009$$
$$x_{53} = -9.73922648158337$$
$$x_{53} = -5.9697827840821$$
$$x_{53} = 58.1194558857455$$
$$x_{53} = 17.9069919293091$$
$$x_{53} = 71.9424664113254$$
$$x_{53} = -381.703507601456$$
$$x_{53} = -0.956925542610824$$
$$x_{53} = -53.7212439801803$$
$$x_{53} = -73.8274324452886$$
$$x_{53} = -93.9336234842473$$
$$x_{53} = 68.1725546184145$$
$$x_{53} = -26.0752597431184$$
$$x_{53} = -80.1106169860811$$
$$x_{53} = -16.0222301181307$$
$$x_{53} = 38.0132519343378$$
$$x_{53} = 27.9601391966996$$
$$x_{53} = 10.367000159236$$
$$x_{53} = -83.8805277908947$$
$$x_{53} = 98.3318471901991$$
$$x_{53} = 88.2787500085987$$
$$x_{53} = -87.6504386436056$$
$$x_{53} = 61.8893680390286$$
$$x_{53} = 44.2964422926316$$
$$x_{53} = -33.6150659084925$$
Decreasing at intervals
$$\left[100.216802889184, \infty\right)$$
Increasing at intervals
$$\left(-\infty, -103.358400898199\right]$$