Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(- \frac{1}{\left(x + 3\right)^{2}} - \frac{2}{x \left(x + 3\right)} + \frac{2 \log{\left(x + 3 \right)}}{x^{2}}\right)}{x} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 54232.7720154785$$
$$x_{2} = 47557.9021762819$$
$$x_{3} = 55341.460585528$$
$$x_{4} = 40837.733275076$$
$$x_{5} = 46441.2859799058$$
$$x_{6} = 48673.2683225189$$
$$x_{7} = 49787.4275369804$$
$$x_{8} = 50900.4203746904$$
$$x_{9} = 41961.3545187714$$
$$x_{10} = 57555.8805564298$$
$$x_{11} = 35194.474176351$$
$$x_{12} = 39712.5339023989$$
$$x_{13} = 32923.8658113025$$
$$x_{14} = 30644.4070335614$$
$$x_{15} = 58661.6683613746$$
$$x_{16} = -2$$
$$x_{17} = 52012.285038714$$
$$x_{18} = 44204.1166985693$$
$$x_{19} = 56449.1537881797$$
$$x_{20} = 53123.0575695818$$
$$x_{21} = 37457.1165432152$$
$$x_{22} = 36326.741841763$$
$$x_{23} = 38585.6867389593$$
$$x_{24} = 45323.3738151654$$
$$x_{25} = 43083.4622826575$$
$$x_{26} = 34060.2172304577$$
$$x_{27} = 31785.3046573135$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$\lim_{x \to 0^-}\left(\frac{2 \left(- \frac{1}{\left(x + 3\right)^{2}} - \frac{2}{x \left(x + 3\right)} + \frac{2 \log{\left(x + 3 \right)}}{x^{2}}\right)}{x}\right) = -\infty$$
$$\lim_{x \to 0^+}\left(\frac{2 \left(- \frac{1}{\left(x + 3\right)^{2}} - \frac{2}{x \left(x + 3\right)} + \frac{2 \log{\left(x + 3 \right)}}{x^{2}}\right)}{x}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = 0$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, -2\right]$$
Convex at the intervals
$$\left[-2, \infty\right)$$