Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(\frac{2 \log{\left(x \right)}}{\left(x - 2\right)^{2}} - \frac{2}{x \left(x - 2\right)} - \frac{1}{x^{2}}\right)}{x - 2} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 47764.2722655984$$
$$x_{2} = 51102.163330264$$
$$x_{3} = 38807.1423661755$$
$$x_{4} = 39931.8376131618$$
$$x_{5} = 46649.306437951$$
$$x_{6} = 43296.8041499171$$
$$x_{7} = 45533.1039315341$$
$$x_{8} = 56644.1060413689$$
$$x_{9} = 30883.9054427158$$
$$x_{10} = 57749.5929537082$$
$$x_{11} = 53321.9578958258$$
$$x_{12} = 49990.6618154252$$
$$x_{13} = 55537.6895261803$$
$$x_{14} = 44415.619329713$$
$$x_{15} = 42176.6065378353$$
$$x_{16} = 41054.9709207592$$
$$x_{17} = 54430.3163216977$$
$$x_{18} = 33157.5966083773$$
$$x_{19} = 48878.0440358842$$
$$x_{20} = 36552.7830628557$$
$$x_{21} = 37680.8158508515$$
$$x_{22} = 52212.5841572977$$
$$x_{23} = 32021.8485312361$$
$$x_{24} = 35422.9626334362$$
$$x_{25} = 34291.2660279171$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 2$$
$$\lim_{x \to 2^-}\left(\frac{2 \left(\frac{2 \log{\left(x \right)}}{\left(x - 2\right)^{2}} - \frac{2}{x \left(x - 2\right)} - \frac{1}{x^{2}}\right)}{x - 2}\right) = -\infty$$
$$\lim_{x \to 2^+}\left(\frac{2 \left(\frac{2 \log{\left(x \right)}}{\left(x - 2\right)^{2}} - \frac{2}{x \left(x - 2\right)} - \frac{1}{x^{2}}\right)}{x - 2}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = 2$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis