Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • (x-3)√x
  • x^3-3x^2-9x+10
  • x^3+3x^2-24x-21
  • x³-2x
  • Identical expressions

  • (two / three)*arccos(x+ one . five)
  • (2 divide by 3) multiply by arc co sinus of e of (x plus 1.5)
  • (two divide by three) multiply by arc co sinus of e of (x plus one . five)
  • (2/3)arccos(x+1.5)
  • 2/3arccosx+1.5
  • (2 divide by 3)*arccos(x+1.5)
  • Similar expressions

  • (2/3)*arccos(x-1.5)

Graphing y = (2/3)*arccos(x+1.5)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       2*acos(x + 3/2)
f(x) = ---------------
              3       
$$f{\left(x \right)} = \frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3}$$
f = 2*acos(x + 3/2)/3
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3} = 0$$
Solve this equation
The points of intersection with the axis X:

Analytical solution
$$x_{1} = - \frac{1}{2}$$
Numerical solution
$$x_{1} = -0.5$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to 2*acos(x + 3/2)/3.
$$\frac{2 \operatorname{acos}{\left(\frac{3}{2} \right)}}{3}$$
The result:
$$f{\left(0 \right)} = \frac{2 \operatorname{acos}{\left(\frac{3}{2} \right)}}{3}$$
The point:
(0, 2*acos(3/2)/3)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$- \frac{2}{3 \sqrt{1 - \left(x + \frac{3}{2}\right)^{2}}} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$- \frac{2 \left(x + \frac{3}{2}\right)}{3 \left(1 - \frac{\left(2 x + 3\right)^{2}}{4}\right)^{\frac{3}{2}}} = 0$$
Solve this equation
The roots of this equation
$$x_{1} = - \frac{3}{2}$$

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \frac{3}{2}\right]$$
Convex at the intervals
$$\left[- \frac{3}{2}, \infty\right)$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(\frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3}\right) = - \infty i$$
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3}\right) = \infty i$$
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of 2*acos(x + 3/2)/3, divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3 x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3 x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3} = \frac{2 \operatorname{acos}{\left(\frac{3}{2} - x \right)}}{3}$$
- No
$$\frac{2 \operatorname{acos}{\left(x + \frac{3}{2} \right)}}{3} = - \frac{2 \operatorname{acos}{\left(\frac{3}{2} - x \right)}}{3}$$
- No
so, the function
not is
neither even, nor odd