Inclined asymptote can be found by calculating the limit of ((2*cot(1))/2)*(x/2 - pi/6), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(\frac{x}{2} - \frac{\pi}{6}\right) \cot{\left(1 \right)}}{x}\right) = \frac{\cot{\left(1 \right)}}{2}$$
Let's take the limitso,
inclined asymptote equation on the left:
$$y = \frac{x \cot{\left(1 \right)}}{2}$$
$$\lim_{x \to \infty}\left(\frac{\left(\frac{x}{2} - \frac{\pi}{6}\right) \cot{\left(1 \right)}}{x}\right) = \frac{\cot{\left(1 \right)}}{2}$$
Let's take the limitso,
inclined asymptote equation on the right:
$$y = \frac{x \cot{\left(1 \right)}}{2}$$