Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • |x^2+4x|
  • -x²-2x+3
  • -x^2+2x+15
  • -(x-2)^2-7
  • Identical expressions

  • two ctg1/ two (x/2-pi/ six)
  • 2ctg1 divide by 2(x divide by 2 minus Pi divide by 6)
  • two ctg1 divide by two (x divide by 2 minus Pi divide by six)
  • 2ctg1/2x/2-pi/6
  • 2ctg1 divide by 2(x divide by 2-pi divide by 6)
  • Similar expressions

  • 2ctg1/2(x/2+pi/6)

Graphing y = 2ctg1/2(x/2-pi/6)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       2*cot(1) /x   pi\
f(x) = --------*|- - --|
          2     \2   6 /
$$f{\left(x \right)} = \frac{2 \cot{\left(1 \right)}}{2} \left(\frac{x}{2} - \frac{\pi}{6}\right)$$
f = ((2*cot(1))/2)*(x/2 - pi/6)
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{2 \cot{\left(1 \right)}}{2} \left(\frac{x}{2} - \frac{\pi}{6}\right) = 0$$
Solve this equation
The points of intersection with the axis X:

Analytical solution
$$x_{1} = \frac{\pi}{3}$$
Numerical solution
$$x_{1} = 1.0471975511966$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to ((2*cot(1))/2)*(x/2 - pi/6).
$$\frac{2 \cot{\left(1 \right)}}{2} \left(- \frac{\pi}{6} + \frac{0}{2}\right)$$
The result:
$$f{\left(0 \right)} = - \frac{\pi \cot{\left(1 \right)}}{6}$$
The point:
(0, -pi*cot(1)/6)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{\cot{\left(1 \right)}}{2} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$0 = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(\frac{2 \cot{\left(1 \right)}}{2} \left(\frac{x}{2} - \frac{\pi}{6}\right)\right) = -\infty$$
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\frac{2 \cot{\left(1 \right)}}{2} \left(\frac{x}{2} - \frac{\pi}{6}\right)\right) = \infty$$
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of ((2*cot(1))/2)*(x/2 - pi/6), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(\frac{x}{2} - \frac{\pi}{6}\right) \cot{\left(1 \right)}}{x}\right) = \frac{\cot{\left(1 \right)}}{2}$$
Let's take the limit
so,
inclined asymptote equation on the left:
$$y = \frac{x \cot{\left(1 \right)}}{2}$$
$$\lim_{x \to \infty}\left(\frac{\left(\frac{x}{2} - \frac{\pi}{6}\right) \cot{\left(1 \right)}}{x}\right) = \frac{\cot{\left(1 \right)}}{2}$$
Let's take the limit
so,
inclined asymptote equation on the right:
$$y = \frac{x \cot{\left(1 \right)}}{2}$$
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\frac{2 \cot{\left(1 \right)}}{2} \left(\frac{x}{2} - \frac{\pi}{6}\right) = \left(- \frac{x}{2} - \frac{\pi}{6}\right) \cot{\left(1 \right)}$$
- No
$$\frac{2 \cot{\left(1 \right)}}{2} \left(\frac{x}{2} - \frac{\pi}{6}\right) = - \left(- \frac{x}{2} - \frac{\pi}{6}\right) \cot{\left(1 \right)}$$
- No
so, the function
not is
neither even, nor odd