Inclined asymptote can be found by calculating the limit of (3*x)*sqrt(5) - 2*x, divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{- 2 x + \sqrt{5} \cdot 3 x}{x}\right) = -2 + 3 \sqrt{5}$$
Let's take the limitso,
inclined asymptote equation on the left:
$$y = x \left(-2 + 3 \sqrt{5}\right)$$
$$\lim_{x \to \infty}\left(\frac{- 2 x + \sqrt{5} \cdot 3 x}{x}\right) = -2 + 3 \sqrt{5}$$
Let's take the limitso,
inclined asymptote equation on the right:
$$y = x \left(-2 + 3 \sqrt{5}\right)$$