In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$- 3 x \sin{\left(x \right)} + 3 \cos{\left(x \right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 56.5663442798215$$
$$x_{2} = 9.52933440536196$$
$$x_{3} = -81.6936492356017$$
$$x_{4} = 97.3996388790738$$
$$x_{5} = -59.7070073053355$$
$$x_{6} = -18.90240995686$$
$$x_{7} = -65.9885986984904$$
$$x_{8} = 59.7070073053355$$
$$x_{9} = -147.661626855354$$
$$x_{10} = 25.1724463266467$$
$$x_{11} = 78.5525459842429$$
$$x_{12} = -78.5525459842429$$
$$x_{13} = 87.9759605524932$$
$$x_{14} = -22.0364967279386$$
$$x_{15} = 65.9885986984904$$
$$x_{16} = -3.42561845948173$$
$$x_{17} = -87.9759605524932$$
$$x_{18} = -47.145097736761$$
$$x_{19} = -84.8347887180423$$
$$x_{20} = 31.4477146375462$$
$$x_{21} = -62.8477631944545$$
$$x_{22} = -6.43729817917195$$
$$x_{23} = -94.2583883450399$$
$$x_{24} = 6.43729817917195$$
$$x_{25} = 47.145097736761$$
$$x_{26} = 62.8477631944545$$
$$x_{27} = 40.8651703304881$$
$$x_{28} = 75.4114834888481$$
$$x_{29} = -28.309642854452$$
$$x_{30} = 100.540910786842$$
$$x_{31} = -50.2853663377737$$
$$x_{32} = -116.247530303932$$
$$x_{33} = 44.0050179208308$$
$$x_{34} = 50.2853663377737$$
$$x_{35} = 81.6936492356017$$
$$x_{36} = 53.4257904773947$$
$$x_{37} = 91.1171613944647$$
$$x_{38} = 22.0364967279386$$
$$x_{39} = -56.5663442798215$$
$$x_{40} = 12.6452872238566$$
$$x_{41} = -9.52933440536196$$
$$x_{42} = 15.7712848748159$$
$$x_{43} = -91.1171613944647$$
$$x_{44} = 0.86033358901938$$
$$x_{45} = -69.1295029738953$$
$$x_{46} = 3.42561845948173$$
$$x_{47} = -0.86033358901938$$
$$x_{48} = -31.4477146375462$$
$$x_{49} = 94.2583883450399$$
$$x_{50} = -72.270467060309$$
$$x_{51} = 37.7256128277765$$
$$x_{52} = 28.309642854452$$
$$x_{53} = -44.0050179208308$$
$$x_{54} = -34.5864242152889$$
$$x_{55} = -75.4114834888481$$
$$x_{56} = -25.1724463266467$$
$$x_{57} = 18.90240995686$$
$$x_{58} = -53.4257904773947$$
$$x_{59} = 72.270467060309$$
$$x_{60} = 34.5864242152889$$
$$x_{61} = -100.540910786842$$
$$x_{62} = -37.7256128277765$$
$$x_{63} = 84.8347887180423$$
$$x_{64} = -40.8651703304881$$
$$x_{65} = -12.6452872238566$$
$$x_{66} = -15.7712848748159$$
$$x_{67} = -97.3996388790738$$
$$x_{68} = 69.1295029738953$$
The values of the extrema at the points:
(56.56634427982152, 169.672521518629)
(9.529334405361963, -28.4318827784394)
(-81.69364923560168, -245.062588489574)
(97.39963887907376, -292.18351738687)
(-59.70700730533546, 179.095904520797)
(-18.902409956860023, -56.6280410939071)
(-65.98859869849039, 197.943068810375)
(59.70700730533546, -179.095904520797)
(-147.66162685535437, 442.974722555226)
(25.172446326646664, 75.4578204536146)
(78.55254598424293, -235.638544775203)
(-78.55254598424293, 235.638544775203)
(87.97596055249322, 263.910833197274)
(-22.036496727938566, 66.0415262374754)
(65.98859869849039, -197.943068810375)
(-3.4256184594817283, 9.86511418677269)
(-87.97596055249322, -263.910833197274)
(-47.14509773676103, 141.403487272626)
(-84.83478871804229, 254.486686570971)
(31.447714637546234, 94.2954818356039)
(-62.84776319445445, -188.519426916464)
(-6.437298179171947, -19.0830118345016)
(-94.25838834503986, -282.759252675326)
(6.437298179171947, 19.0830118345016)
(47.14509773676103, -141.403487272626)
(62.84776319445445, 188.519426916464)
(40.86517033048807, -122.558821393552)
(75.41148348884815, 226.214562219606)
(-28.30964285445201, 84.875992617283)
(100.54091078684232, 301.607814167478)
(-50.28536633777365, -150.826278106192)
(-116.2475303039321, 348.72968812796)
(44.005017920830845, 131.980979937319)
(50.28536633777365, 150.826278106192)
(81.69364923560168, 245.062588489574)
(53.42579047739466, -160.249302479688)
(91.11716139446474, -273.335023348941)
(22.036496727938566, -66.0415262374754)
(-56.56634427982152, -169.672521518629)
(12.645287223856643, 37.817793893678)
(-9.529334405361963, 28.4318827784394)
(15.771284874815882, -47.2190308864012)
(-91.11716139446474, 273.335023348941)
(0.8603335890193797, 1.68328901457314)
(-69.12950297389526, -207.366813920765)
(3.4256184594817283, -9.86511418677269)
(-0.8603335890193797, -1.68328901457314)
(-31.447714637546234, -94.2954818356039)
(94.25838834503986, 282.759252675326)
(-72.27046706030896, 216.790648794748)
(37.7256128277765, 113.13709863843)
(28.30964285445201, -84.875992617283)
(-44.005017920830845, -131.980979937319)
(-34.58642421528892, 103.715930200765)
(-75.41148348884815, -226.214562219606)
(-25.172446326646664, -75.4578204536146)
(18.902409956860023, 56.6280410939071)
(-53.42579047739466, 160.249302479688)
(72.27046706030896, -216.790648794748)
(34.58642421528892, -103.715930200765)
(-100.54091078684232, -301.607814167478)
(-37.7256128277765, -113.13709863843)
(84.83478871804229, -254.486686570971)
(-40.86517033048807, 122.558821393552)
(-12.645287223856643, -37.817793893678)
(-15.771284874815882, 47.2190308864012)
(-97.39963887907376, 292.18351738687)
(69.12950297389526, 207.366813920765)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
$$x_{1} = 9.52933440536196$$
$$x_{2} = -81.6936492356017$$
$$x_{3} = 97.3996388790738$$
$$x_{4} = -18.90240995686$$
$$x_{5} = 59.7070073053355$$
$$x_{6} = 78.5525459842429$$
$$x_{7} = 65.9885986984904$$
$$x_{8} = -87.9759605524932$$
$$x_{9} = -62.8477631944545$$
$$x_{10} = -6.43729817917195$$
$$x_{11} = -94.2583883450399$$
$$x_{12} = 47.145097736761$$
$$x_{13} = 40.8651703304881$$
$$x_{14} = -50.2853663377737$$
$$x_{15} = 53.4257904773947$$
$$x_{16} = 91.1171613944647$$
$$x_{17} = 22.0364967279386$$
$$x_{18} = -56.5663442798215$$
$$x_{19} = 15.7712848748159$$
$$x_{20} = -69.1295029738953$$
$$x_{21} = 3.42561845948173$$
$$x_{22} = -0.86033358901938$$
$$x_{23} = -31.4477146375462$$
$$x_{24} = 28.309642854452$$
$$x_{25} = -44.0050179208308$$
$$x_{26} = -75.4114834888481$$
$$x_{27} = -25.1724463266467$$
$$x_{28} = 72.270467060309$$
$$x_{29} = 34.5864242152889$$
$$x_{30} = -100.540910786842$$
$$x_{31} = -37.7256128277765$$
$$x_{32} = 84.8347887180423$$
$$x_{33} = -12.6452872238566$$
Maxima of the function at points:
$$x_{33} = 56.5663442798215$$
$$x_{33} = -59.7070073053355$$
$$x_{33} = -65.9885986984904$$
$$x_{33} = -147.661626855354$$
$$x_{33} = 25.1724463266467$$
$$x_{33} = -78.5525459842429$$
$$x_{33} = 87.9759605524932$$
$$x_{33} = -22.0364967279386$$
$$x_{33} = -3.42561845948173$$
$$x_{33} = -47.145097736761$$
$$x_{33} = -84.8347887180423$$
$$x_{33} = 31.4477146375462$$
$$x_{33} = 6.43729817917195$$
$$x_{33} = 62.8477631944545$$
$$x_{33} = 75.4114834888481$$
$$x_{33} = -28.309642854452$$
$$x_{33} = 100.540910786842$$
$$x_{33} = -116.247530303932$$
$$x_{33} = 44.0050179208308$$
$$x_{33} = 50.2853663377737$$
$$x_{33} = 81.6936492356017$$
$$x_{33} = 12.6452872238566$$
$$x_{33} = -9.52933440536196$$
$$x_{33} = -91.1171613944647$$
$$x_{33} = 0.86033358901938$$
$$x_{33} = 94.2583883450399$$
$$x_{33} = -72.270467060309$$
$$x_{33} = 37.7256128277765$$
$$x_{33} = -34.5864242152889$$
$$x_{33} = 18.90240995686$$
$$x_{33} = -53.4257904773947$$
$$x_{33} = -40.8651703304881$$
$$x_{33} = -15.7712848748159$$
$$x_{33} = -97.3996388790738$$
$$x_{33} = 69.1295029738953$$
Decreasing at intervals
$$\left[97.3996388790738, \infty\right)$$
Increasing at intervals
$$\left(-\infty, -100.540910786842\right]$$