Inclined asymptote can be found by calculating the limit of 3*(log(3)*(1 - x/2)) + 1, divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{3 \left(- \frac{x}{2} + 1\right) \log{\left(3 \right)} + 1}{x}\right) = - \frac{3 \log{\left(3 \right)}}{2}$$
Let's take the limitso,
inclined asymptote equation on the left:
$$y = - \frac{3 x \log{\left(3 \right)}}{2}$$
$$\lim_{x \to \infty}\left(\frac{3 \left(- \frac{x}{2} + 1\right) \log{\left(3 \right)} + 1}{x}\right) = - \frac{3 \log{\left(3 \right)}}{2}$$
Let's take the limitso,
inclined asymptote equation on the right:
$$y = - \frac{3 x \log{\left(3 \right)}}{2}$$