Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • (4x^2+1)/x
  • 2x^3-3x^2-12x+1
  • 2x^2-8x
  • -1/3x^3+4x
  • Identical expressions

  • (tgx*arctg(one /x- two))/x
  • (tgx multiply by arctg(1 divide by x minus 2)) divide by x
  • (tgx multiply by arctg(one divide by x minus two)) divide by x
  • (tgxarctg(1/x-2))/x
  • tgxarctg1/x-2/x
  • (tgx*arctg(1 divide by x-2)) divide by x
  • Similar expressions

  • (tgx*arctg(1/x+2))/x

Graphing y = (tgx*arctg(1/x-2))/x

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
                  /1    \
       tan(x)*atan|- - 2|
                  \x    /
f(x) = ------------------
               x         
$$f{\left(x \right)} = \frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x}$$
f = (tan(x)*atan(-2 + 1/x))/x
The graph of the function
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = 0$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x} = 0$$
Solve this equation
The points of intersection with the axis X:

Analytical solution
$$x_{1} = \frac{1}{2}$$
$$x_{2} = \pi$$
Numerical solution
$$x_{1} = 72.2566310325652$$
$$x_{2} = -59.6902604182061$$
$$x_{3} = 3.14159265358979$$
$$x_{4} = -43.9822971502571$$
$$x_{5} = 81.6814089933346$$
$$x_{6} = -100.530964914873$$
$$x_{7} = 28.2743338823081$$
$$x_{8} = 65.9734457253857$$
$$x_{9} = -31.4159265358979$$
$$x_{10} = -9.42477796076938$$
$$x_{11} = 40.8407044966673$$
$$x_{12} = 56.5486677646163$$
$$x_{13} = -56.5486677646163$$
$$x_{14} = 12.5663706143592$$
$$x_{15} = 43.9822971502571$$
$$x_{16} = 100.530964914873$$
$$x_{17} = -3.14159265358979$$
$$x_{18} = -15.707963267949$$
$$x_{19} = 59.6902604182061$$
$$x_{20} = 6.28318530717959$$
$$x_{21} = 9.42477796076938$$
$$x_{22} = -53.4070751110265$$
$$x_{23} = -47.1238898038469$$
$$x_{24} = -87.9645943005142$$
$$x_{25} = 69.1150383789755$$
$$x_{26} = 21.9911485751286$$
$$x_{27} = 87.9645943005142$$
$$x_{28} = 18.8495559215388$$
$$x_{29} = -84.8230016469244$$
$$x_{30} = -72.2566310325652$$
$$x_{31} = 25.1327412287183$$
$$x_{32} = 37.6991118430775$$
$$x_{33} = -25.1327412287183$$
$$x_{34} = 50.2654824574367$$
$$x_{35} = 34.5575191894877$$
$$x_{36} = -6.28318530717959$$
$$x_{37} = -65.9734457253857$$
$$x_{38} = -21.9911485751286$$
$$x_{39} = -62.8318530717959$$
$$x_{40} = 75.398223686155$$
$$x_{41} = 84.8230016469244$$
$$x_{42} = 53.4070751110265$$
$$x_{43} = 15.707963267949$$
$$x_{44} = -28.2743338823081$$
$$x_{45} = -91.106186954104$$
$$x_{46} = 47.1238898038469$$
$$x_{47} = 97.3893722612836$$
$$x_{48} = -69.1150383789755$$
$$x_{49} = 94.2477796076938$$
$$x_{50} = -18.8495559215388$$
$$x_{51} = -50.2654824574367$$
$$x_{52} = -37.6991118430775$$
$$x_{53} = -81.6814089933346$$
$$x_{54} = 62.8318530717959$$
$$x_{55} = 78.5398163397448$$
$$x_{56} = 31.4159265358979$$
$$x_{57} = -78.5398163397448$$
$$x_{58} = -40.8407044966673$$
$$x_{59} = -97.3893722612836$$
$$x_{60} = -75.398223686155$$
$$x_{61} = 91.106186954104$$
$$x_{62} = -12.5663706143592$$
$$x_{63} = -94.2477796076938$$
$$x_{64} = -34.5575191894877$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (tan(x)*atan(1/x - 2))/x.
$$\frac{\tan{\left(0 \right)} \operatorname{atan}{\left(-2 + \frac{1}{0} \right)}}{0}$$
The result:
$$f{\left(0 \right)} = \text{NaN}$$
- the solutions of the equation d'not exist
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \operatorname{atan}{\left(-2 + \frac{1}{x} \right)} - \frac{\tan{\left(x \right)}}{x^{2} \left(\left(-2 + \frac{1}{x}\right)^{2} + 1\right)}}{x} - \frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x^{2}} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Vertical asymptotes
Have:
$$x_{1} = 0$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
True

Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = \lim_{x \to -\infty}\left(\frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x}\right)$$
True

Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = \lim_{x \to \infty}\left(\frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x}\right)$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (tan(x)*atan(1/x - 2))/x, divided by x at x->+oo and x ->-oo
True

Let's take the limit
so,
inclined asymptote equation on the left:
$$y = x \lim_{x \to -\infty}\left(\frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x^{2}}\right)$$
True

Let's take the limit
so,
inclined asymptote equation on the right:
$$y = x \lim_{x \to \infty}\left(\frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x^{2}}\right)$$
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x} = - \frac{\tan{\left(x \right)} \operatorname{atan}{\left(2 + \frac{1}{x} \right)}}{x}$$
- No
$$\frac{\tan{\left(x \right)} \operatorname{atan}{\left(-2 + \frac{1}{x} \right)}}{x} = \frac{\tan{\left(x \right)} \operatorname{atan}{\left(2 + \frac{1}{x} \right)}}{x}$$
- No
so, the function
not is
neither even, nor odd