Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$4 \cdot 10^{\log{\left(\cos{\left(2 x \right)} \right)}} \left(- \frac{\sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} + \frac{\log{\left(10 \right)} \sin^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}} - 1\right) \log{\left(10 \right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \operatorname{atan}{\left(\sqrt{-1 + 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} + \log{\left(100 \right)}} \right)}$$
$$x_{2} = \operatorname{atan}{\left(\sqrt{-1 + 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} + \log{\left(100 \right)}} \right)}$$
$$x_{3} = - \operatorname{atan}{\left(\sqrt{- 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} - 1 + \log{\left(100 \right)}} \right)}$$
$$x_{4} = \operatorname{atan}{\left(\sqrt{- 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} - 1 + \log{\left(100 \right)}} \right)}$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[- \operatorname{atan}{\left(\sqrt{-1 + 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} + \log{\left(100 \right)}} \right)}, - \operatorname{atan}{\left(\sqrt{- 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} - 1 + \log{\left(100 \right)}} \right)}\right] \cup \left[\operatorname{atan}{\left(\sqrt{- 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} - 1 + \log{\left(100 \right)}} \right)}, \infty\right)$$
Convex at the intervals
$$\left(-\infty, - \operatorname{atan}{\left(\sqrt{-1 + 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} + \log{\left(100 \right)}} \right)}\right] \cup \left[- \operatorname{atan}{\left(\sqrt{- 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} - 1 + \log{\left(100 \right)}} \right)}, \operatorname{atan}{\left(\sqrt{- 2 \sqrt{-1 + \log{\left(10 \right)}} \sqrt{\log{\left(10 \right)}} - 1 + \log{\left(100 \right)}} \right)}\right]$$