Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{- \frac{2 x}{\left(x - 4\right) \sqrt{x^{2} + 4}} - \frac{\frac{x^{2}}{x^{2} + 4} - 1}{\sqrt{x^{2} + 4}} + \frac{2 \sqrt{x^{2} + 4}}{\left(x - 4\right)^{2}}}{x - 4} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{\sqrt[3]{\frac{135 \sqrt{6}}{2} + \frac{1323}{8}}}{3} - \frac{1}{2} - \frac{3}{4 \sqrt[3]{\frac{135 \sqrt{6}}{2} + \frac{1323}{8}}}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 4$$
$$\lim_{x \to 4^-}\left(\frac{- \frac{2 x}{\left(x - 4\right) \sqrt{x^{2} + 4}} - \frac{\frac{x^{2}}{x^{2} + 4} - 1}{\sqrt{x^{2} + 4}} + \frac{2 \sqrt{x^{2} + 4}}{\left(x - 4\right)^{2}}}{x - 4}\right) = -\infty$$
$$\lim_{x \to 4^+}\left(\frac{- \frac{2 x}{\left(x - 4\right) \sqrt{x^{2} + 4}} - \frac{\frac{x^{2}}{x^{2} + 4} - 1}{\sqrt{x^{2} + 4}} + \frac{2 \sqrt{x^{2} + 4}}{\left(x - 4\right)^{2}}}{x - 4}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = 4$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \frac{\sqrt[3]{\frac{135 \sqrt{6}}{2} + \frac{1323}{8}}}{3} - \frac{1}{2} - \frac{3}{4 \sqrt[3]{\frac{135 \sqrt{6}}{2} + \frac{1323}{8}}}\right]$$
Convex at the intervals
$$\left[- \frac{\sqrt[3]{\frac{135 \sqrt{6}}{2} + \frac{1323}{8}}}{3} - \frac{1}{2} - \frac{3}{4 \sqrt[3]{\frac{135 \sqrt{6}}{2} + \frac{1323}{8}}}, \infty\right)$$