Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\frac{\sqrt{x + 1} \left(\left(2 x + 5\right) \left(\frac{1}{x + 3} + \frac{1}{x + 2}\right) - 2 + \frac{2 x + 5}{x + 3} + \frac{2 x + 5}{x + 2}\right)}{\left(x + 2\right) \left(x + 3\right)} - \frac{2 x + 5}{\sqrt{x + 1} \left(x + 2\right) \left(x + 3\right)} - \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}}}{\left(x + 2\right) \left(x + 3\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{3}{2} - \frac{\sqrt{- 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} - \frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + \frac{8}{5 \sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}} + \frac{14}{5}}}{2} + \frac{\sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}}{2}$$
$$x_{2} = - \frac{3}{2} + \frac{\sqrt{- 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} - \frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + \frac{8}{5 \sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}} + \frac{14}{5}}}{2} + \frac{\sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}}{2}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -3$$
$$x_{2} = -2$$
$$\lim_{x \to -3^-}\left(\frac{\frac{\sqrt{x + 1} \left(\left(2 x + 5\right) \left(\frac{1}{x + 3} + \frac{1}{x + 2}\right) - 2 + \frac{2 x + 5}{x + 3} + \frac{2 x + 5}{x + 2}\right)}{\left(x + 2\right) \left(x + 3\right)} - \frac{2 x + 5}{\sqrt{x + 1} \left(x + 2\right) \left(x + 3\right)} - \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}}}{\left(x + 2\right) \left(x + 3\right)}\right) = \infty i$$
$$\lim_{x \to -3^+}\left(\frac{\frac{\sqrt{x + 1} \left(\left(2 x + 5\right) \left(\frac{1}{x + 3} + \frac{1}{x + 2}\right) - 2 + \frac{2 x + 5}{x + 3} + \frac{2 x + 5}{x + 2}\right)}{\left(x + 2\right) \left(x + 3\right)} - \frac{2 x + 5}{\sqrt{x + 1} \left(x + 2\right) \left(x + 3\right)} - \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}}}{\left(x + 2\right) \left(x + 3\right)}\right) = - \infty i$$
- the limits are not equal, so
$$x_{1} = -3$$
- is an inflection point
$$\lim_{x \to -2^-}\left(\frac{\frac{\sqrt{x + 1} \left(\left(2 x + 5\right) \left(\frac{1}{x + 3} + \frac{1}{x + 2}\right) - 2 + \frac{2 x + 5}{x + 3} + \frac{2 x + 5}{x + 2}\right)}{\left(x + 2\right) \left(x + 3\right)} - \frac{2 x + 5}{\sqrt{x + 1} \left(x + 2\right) \left(x + 3\right)} - \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}}}{\left(x + 2\right) \left(x + 3\right)}\right) = - \infty i$$
$$\lim_{x \to -2^+}\left(\frac{\frac{\sqrt{x + 1} \left(\left(2 x + 5\right) \left(\frac{1}{x + 3} + \frac{1}{x + 2}\right) - 2 + \frac{2 x + 5}{x + 3} + \frac{2 x + 5}{x + 2}\right)}{\left(x + 2\right) \left(x + 3\right)} - \frac{2 x + 5}{\sqrt{x + 1} \left(x + 2\right) \left(x + 3\right)} - \frac{1}{4 \left(x + 1\right)^{\frac{3}{2}}}}{\left(x + 2\right) \left(x + 3\right)}\right) = \infty i$$
- the limits are not equal, so
$$x_{2} = -2$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[- \frac{3}{2} + \frac{\sqrt{- 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} - \frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + \frac{8}{5 \sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}} + \frac{14}{5}}}{2} + \frac{\sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}}{2}, \infty\right)$$
Convex at the intervals
$$\left(-\infty, - \frac{3}{2} + \frac{\sqrt{- 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} - \frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + \frac{8}{5 \sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}} + \frac{14}{5}}}{2} + \frac{\sqrt{\frac{289}{450 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}}} + 2 \sqrt[3]{\frac{2 \sqrt{26165}}{3375} + \frac{617}{3000}} + \frac{7}{5}}}{2}\right]$$