Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\sqrt{x} \log{\left(x \right)}^{2} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 1$$
Numerical solution$$x_{1} = 1.00000050151829$$
$$x_{2} = 1.00000087472621$$
$$x_{3} = 1.00000059953375$$
$$x_{4} = 1.00000094198602$$
$$x_{5} = 1.00000090336182$$
$$x_{6} = 1.00000079564216$$
$$x_{7} = 1.00000095363529$$
$$x_{8} = 1.0000003437082$$
$$x_{9} = 1.00000083510986$$
$$x_{10} = 1.00000061472606$$
$$x_{11} = 1.00000075233125$$
$$x_{12} = 0.999999107992762$$
$$x_{13} = 1.00000021457117$$
$$x_{14} = 1.00000083914674$$
$$x_{15} = 1.00000037718347$$
$$x_{16} = 1.00000092200914$$
$$x_{17} = 1.00000088800753$$
$$x_{18} = 0.999999991909142$$
$$x_{19} = 1.0000009256755$$
$$x_{20} = 1.00000094280649$$
$$x_{21} = 1.00000067841741$$
$$x_{22} = 0.999999663646737$$
$$x_{23} = 1.00000095232642$$
$$x_{24} = 1.00000074276506$$
$$x_{25} = 1.00000095642422$$