Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(x + \left(\left(- x + \sqrt{2}\right) + \sqrt{3}\right)\right) = \sqrt{2} + \sqrt{3}$$
Let's take the limitso,
equation of the horizontal asymptote on the left:
$$y = \sqrt{2} + \sqrt{3}$$
$$\lim_{x \to \infty}\left(x + \left(\left(- x + \sqrt{2}\right) + \sqrt{3}\right)\right) = \sqrt{2} + \sqrt{3}$$
Let's take the limitso,
equation of the horizontal asymptote on the right:
$$y = \sqrt{2} + \sqrt{3}$$