The graph of the function
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = 0$$
$$x_{2} = 0.714285714285714$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left(\sqrt{3} \cot{\left(x + \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} + 5 x^{3}}} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = \frac{\pi}{6}$$
Numerical solution$$x_{1} = 0.523598775598299$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (sqrt(3)*cot(x + pi/3))^(2/(5*x^3 - 7*x^4)).
$$\left(\sqrt{3} \cot{\left(\frac{\pi}{3} \right)}\right)^{\frac{2}{5 \cdot 0^{3} - 7 \cdot 0^{4}}}$$
The result:
$$f{\left(0 \right)} = \text{NaN}$$
- the solutions of the equation d'not exist
Vertical asymptotes
Have:
$$x_{1} = 0$$
$$x_{2} = 0.714285714285714$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
True
Let's take the limitso,
equation of the horizontal asymptote on the left:
$$y = \lim_{x \to -\infty} \left(\sqrt{3} \cot{\left(x + \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} + 5 x^{3}}}$$
True
Let's take the limitso,
equation of the horizontal asymptote on the right:
$$y = \lim_{x \to \infty} \left(\sqrt{3} \cot{\left(x + \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} + 5 x^{3}}}$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (sqrt(3)*cot(x + pi/3))^(2/(5*x^3 - 7*x^4)), divided by x at x->+oo and x ->-oo
True
Let's take the limitso,
inclined asymptote equation on the left:
$$y = x \lim_{x \to -\infty}\left(\frac{\left(\sqrt{3} \cot{\left(x + \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} + 5 x^{3}}}}{x}\right)$$
True
Let's take the limitso,
inclined asymptote equation on the right:
$$y = x \lim_{x \to \infty}\left(\frac{\left(\sqrt{3} \cot{\left(x + \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} + 5 x^{3}}}}{x}\right)$$
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\left(\sqrt{3} \cot{\left(x + \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} + 5 x^{3}}} = \left(- \sqrt{3} \cot{\left(x - \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} - 5 x^{3}}}$$
- No
$$\left(\sqrt{3} \cot{\left(x + \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} + 5 x^{3}}} = - \left(- \sqrt{3} \cot{\left(x - \frac{\pi}{3} \right)}\right)^{\frac{2}{- 7 x^{4} - 5 x^{3}}}$$
- No
so, the function
not is
neither even, nor odd