Mister Exam

Other calculators

Graphing y = sqrt(3x-5)+sqrt(3x+11)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
         _________     __________
f(x) = \/ 3*x - 5  + \/ 3*x + 11 
f(x)=3x5+3x+11f{\left(x \right)} = \sqrt{3 x - 5} + \sqrt{3 x + 11}
f = sqrt(3*x - 5) + sqrt(3*x + 11)
The graph of the function
02468-8-6-4-2-1010020
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
3x5+3x+11=0\sqrt{3 x - 5} + \sqrt{3 x + 11} = 0
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to sqrt(3*x - 5) + sqrt(3*x + 11).
03+11+5+03\sqrt{0 \cdot 3 + 11} + \sqrt{-5 + 0 \cdot 3}
The result:
f(0)=11+5if{\left(0 \right)} = \sqrt{11} + \sqrt{5} i
The point:
(0, sqrt(11) + i*sqrt(5))
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
323x+11+323x5=0\frac{3}{2 \sqrt{3 x + 11}} + \frac{3}{2 \sqrt{3 x - 5}} = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
9(1(3x+11)32+1(3x5)32)4=0- \frac{9 \left(\frac{1}{\left(3 x + 11\right)^{\frac{3}{2}}} + \frac{1}{\left(3 x - 5\right)^{\frac{3}{2}}}\right)}{4} = 0
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(3x5+3x+11)=i\lim_{x \to -\infty}\left(\sqrt{3 x - 5} + \sqrt{3 x + 11}\right) = \infty i
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
limx(3x5+3x+11)=\lim_{x \to \infty}\left(\sqrt{3 x - 5} + \sqrt{3 x + 11}\right) = \infty
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of sqrt(3*x - 5) + sqrt(3*x + 11), divided by x at x->+oo and x ->-oo
limx(3x5+3x+11x)=0\lim_{x \to -\infty}\left(\frac{\sqrt{3 x - 5} + \sqrt{3 x + 11}}{x}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
limx(3x5+3x+11x)=0\lim_{x \to \infty}\left(\frac{\sqrt{3 x - 5} + \sqrt{3 x + 11}}{x}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
3x5+3x+11=113x+3x5\sqrt{3 x - 5} + \sqrt{3 x + 11} = \sqrt{11 - 3 x} + \sqrt{- 3 x - 5}
- No
3x5+3x+11=113x3x5\sqrt{3 x - 5} + \sqrt{3 x + 11} = - \sqrt{11 - 3 x} - \sqrt{- 3 x - 5}
- No
so, the function
not is
neither even, nor odd