Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$- x^{2} \sin{\left(\frac{x^{2}}{2} \right)} + \cos{\left(\frac{x^{2}}{2} \right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 14.1799815387615$$
$$x_{2} = 64.2499278700518$$
$$x_{3} = -59.9498336293975$$
$$x_{4} = -47.559936866846$$
$$x_{5} = 22.1380336709551$$
$$x_{6} = -17.724718091022$$
$$x_{7} = -35.8894767404149$$
$$x_{8} = -79.4249228230661$$
$$x_{9} = 16.2450411342797$$
$$x_{10} = -91.449001541881$$
$$x_{11} = 132.09241353182$$
$$x_{12} = 62.1118048121949$$
$$x_{13} = -85.922889888772$$
$$x_{14} = -7.52223435955955$$
$$x_{15} = 42.093460126037$$
$$x_{16} = 66.1768888343185$$
$$x_{17} = -9.38015585525559$$
$$x_{18} = 29.7645995407721$$
$$x_{19} = 28.3593054588084$$
$$x_{20} = 5.02115792308416$$
$$x_{21} = 82.2617217871396$$
$$x_{22} = -4.35373074624989$$
$$x_{23} = 55.8815151738985$$
$$x_{24} = -55.8815151738985$$
$$x_{25} = -45.8103137472457$$
$$x_{26} = -57.4340743163298$$
$$x_{27} = -70.587295953259$$
$$x_{28} = 16.815183976682$$
$$x_{29} = -29.7645995407721$$
$$x_{30} = -10.0275049085882$$
$$x_{31} = 46.894730695135$$
$$x_{32} = -13.7297548721099$$
$$x_{33} = 33.8162900812461$$
$$x_{34} = -71.7789129206483$$
$$x_{35} = 58.2487824365421$$
$$x_{36} = -28.2483103986713$$
$$x_{37} = -95.8764847185019$$
$$x_{38} = 80.2512632324581$$
$$x_{39} = -91.9286923371488$$
$$x_{40} = 10.0275049085882$$
$$x_{41} = -53.7611935626473$$
$$x_{42} = 36.1511282566292$$
$$x_{43} = 90.1689638039579$$
$$x_{44} = -3.56696520646492$$
$$x_{45} = -2.56605144971105$$
$$x_{46} = 1.14304084537203$$
$$x_{47} = -33.9090644313446$$
$$x_{48} = -11.7577439852518$$
$$x_{49} = 28.2483103986713$$
$$x_{50} = 72.9510680592798$$
$$x_{51} = -65.7482467750982$$
$$x_{52} = 42.3909437359466$$
$$x_{53} = 79.8588342038191$$
$$x_{54} = 40.1843235914693$$
$$x_{55} = 4.35373074624989$$
$$x_{56} = -22.6985699325417$$
$$x_{57} = 6.14427185889196$$
$$x_{58} = -19.2539172148114$$
$$x_{59} = -39.9490966257185$$
$$x_{60} = -6.14427185889196$$
$$x_{61} = -16.4372859842373$$
$$x_{62} = 13.4990129024273$$
$$x_{63} = -7.92866100102534$$
$$x_{64} = 95.3837121558146$$
$$x_{65} = -67.9569101258409$$
$$x_{66} = 53.5855986427455$$
$$x_{67} = -16.815183976682$$
$$x_{68} = 31.805578308395$$
$$x_{69} = 85.4462497765434$$
$$x_{70} = 38.1798423685789$$
$$x_{71} = 18.2486938436992$$
$$x_{72} = -1.14304084537203$$
$$x_{73} = 12.2804604524256$$
$$x_{74} = -74.2317578759226$$
$$x_{75} = 83.9252704094543$$
$$x_{76} = -89.7498958890531$$
$$x_{77} = 9.03913081064472$$
$$x_{78} = 3.56696520646492$$
$$x_{79} = -19.7373408289116$$
$$x_{80} = 90.8285337917345$$
$$x_{81} = -100.98321617812$$
$$x_{82} = -23.5143344401239$$
$$x_{83} = 62.2633588110138$$
$$x_{84} = 43.9911594310076$$
$$x_{85} = -15.8535601598001$$
$$x_{86} = -31.9042001096174$$
$$x_{87} = -30.9038227543119$$
$$x_{88} = -87.8751102504162$$
$$x_{89} = 82.2999031373535$$
$$x_{90} = -97.0489308947314$$
$$x_{91} = -63.9067362597573$$
$$x_{92} = 45.6729513032366$$
$$x_{93} = 88.1250094876944$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[132.09241353182, \infty\right)$$
Convex at the intervals
$$\left(-\infty, -89.7498958890531\right]$$