Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\sin{\left(\frac{x + \frac{157}{3 \cdot 50}}{2} \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = - \frac{157}{150}$$
$$x_{2} = - \frac{157}{150} + 2 \pi$$
Numerical solution$$x_{1} = 80.634742326668$$
$$x_{2} = -32.4625932025646$$
$$x_{3} = 61.7851864051292$$
$$x_{4} = -57.5953344312829$$
$$x_{5} = 419.926748914366$$
$$x_{6} = -19.8962225882054$$
$$x_{7} = -1.04666666666667$$
$$x_{8} = -38.7457785097442$$
$$x_{9} = 17.8028892548721$$
$$x_{10} = -51.3121491241034$$
$$x_{11} = 2160.36907900311$$
$$x_{12} = 42.9356304835904$$
$$x_{13} = -13.6130372810258$$
$$x_{14} = -95.2944462743605$$
$$x_{15} = 86.9179276338475$$
$$x_{16} = 49.21881579077$$
$$x_{17} = -26.179407895385$$
$$x_{18} = 11.5197039476925$$
$$x_{19} = -76.4448903528217$$
$$x_{20} = 13740.2796001351$$
$$x_{21} = -522.551047162572$$
$$x_{22} = -82.7280756600013$$
$$x_{23} = 74.3515570194884$$
$$x_{24} = 24.0860745620517$$
$$x_{25} = 99.4842982482067$$
$$x_{26} = 30.3692598692313$$
$$x_{27} = -45.0289638169238$$
$$x_{28} = -70.1617050456421$$
$$x_{29} = 55.5020010979496$$
$$x_{30} = -101.57763158154$$
$$x_{31} = 5.23651864051292$$
$$x_{32} = -7.32985197384625$$
$$x_{33} = 93.2011129410271$$
$$x_{34} = -63.8785197384625$$
$$x_{35} = 68.0683717123088$$
$$x_{36} = -89.0112609671809$$
$$x_{37} = 36.6524451764109$$