Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • (x+2)^2/(x+1)
  • x^2-3x+3
  • -x^2-3
  • -x^2+2x+15
  • Identical expressions

  • sinx(x^ two + three)
  • sinus of x(x squared plus 3)
  • sinus of x(x to the power of two plus three)
  • sinx(x2+3)
  • sinxx2+3
  • sinx(x²+3)
  • sinx(x to the power of 2+3)
  • sinxx^2+3
  • Similar expressions

  • sinx(x^2-3)

Graphing y = sinx(x^2+3)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
              / 2    \
f(x) = sin(x)*\x  + 3/
f(x)=(x2+3)sin(x)f{\left(x \right)} = \left(x^{2} + 3\right) \sin{\left(x \right)}
f = (x^2 + 3)*sin(x)
The graph of the function
02468-8-6-4-2-1010-100100
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
(x2+3)sin(x)=0\left(x^{2} + 3\right) \sin{\left(x \right)} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
x2=πx_{2} = \pi
Numerical solution
x1=69.1150383789755x_{1} = 69.1150383789755
x2=65.9734457253857x_{2} = 65.9734457253857
x3=91.106186954104x_{3} = -91.106186954104
x4=103.672557568463x_{4} = -103.672557568463
x5=59.6902604182061x_{5} = -59.6902604182061
x6=21.9911485751286x_{6} = -21.9911485751286
x7=12.5663706143592x_{7} = 12.5663706143592
x8=21.9911485751286x_{8} = 21.9911485751286
x9=69.1150383789755x_{9} = -69.1150383789755
x10=100.530964914873x_{10} = -100.530964914873
x11=3.14159265358979x_{11} = 3.14159265358979
x12=3.14159265358979x_{12} = -3.14159265358979
x13=25.1327412287183x_{13} = -25.1327412287183
x14=15.707963267949x_{14} = -15.707963267949
x15=53.4070751110265x_{15} = -53.4070751110265
x16=72.2566310325652x_{16} = -72.2566310325652
x17=84.8230016469244x_{17} = 84.8230016469244
x18=81.6814089933346x_{18} = -81.6814089933346
x19=94.2477796076938x_{19} = -94.2477796076938
x20=106.814150222053x_{20} = -106.814150222053
x21=18.8495559215388x_{21} = 18.8495559215388
x22=65.9734457253857x_{22} = -65.9734457253857
x23=94.2477796076938x_{23} = 94.2477796076938
x24=9.42477796076938x_{24} = 9.42477796076938
x25=40.8407044966673x_{25} = -40.8407044966673
x26=34.5575191894877x_{26} = 34.5575191894877
x27=0x_{27} = 0
x28=97.3893722612836x_{28} = 97.3893722612836
x29=53.4070751110265x_{29} = 53.4070751110265
x30=62.8318530717959x_{30} = -62.8318530717959
x31=59.6902604182061x_{31} = 59.6902604182061
x32=28.2743338823081x_{32} = -28.2743338823081
x33=56.5486677646163x_{33} = -56.5486677646163
x34=91.106186954104x_{34} = 91.106186954104
x35=15.707963267949x_{35} = 15.707963267949
x36=18.8495559215388x_{36} = -18.8495559215388
x37=6.28318530717959x_{37} = 6.28318530717959
x38=56.5486677646163x_{38} = 56.5486677646163
x39=87.9645943005142x_{39} = 87.9645943005142
x40=31.4159265358979x_{40} = 31.4159265358979
x41=25.1327412287183x_{41} = 25.1327412287183
x42=43.9822971502571x_{42} = 43.9822971502571
x43=47.1238898038469x_{43} = -47.1238898038469
x44=72.2566310325652x_{44} = 72.2566310325652
x45=34.5575191894877x_{45} = -34.5575191894877
x46=97.3893722612836x_{46} = -97.3893722612836
x47=50.2654824574367x_{47} = -50.2654824574367
x48=100.530964914873x_{48} = 100.530964914873
x49=81.6814089933346x_{49} = 81.6814089933346
x50=75.398223686155x_{50} = -75.398223686155
x51=40.8407044966673x_{51} = 40.8407044966673
x52=9.42477796076938x_{52} = -9.42477796076938
x53=78.5398163397448x_{53} = 78.5398163397448
x54=87.9645943005142x_{54} = -87.9645943005142
x55=37.6991118430775x_{55} = 37.6991118430775
x56=78.5398163397448x_{56} = -78.5398163397448
x57=6.28318530717959x_{57} = -6.28318530717959
x58=50.2654824574367x_{58} = 50.2654824574367
x59=37.6991118430775x_{59} = -37.6991118430775
x60=43.9822971502571x_{60} = -43.9822971502571
x61=47.1238898038469x_{61} = 47.1238898038469
x62=28.2743338823081x_{62} = 28.2743338823081
x63=62.8318530717959x_{63} = 62.8318530717959
x64=31.4159265358979x_{64} = -31.4159265358979
x65=12.5663706143592x_{65} = -12.5663706143592
x66=75.398223686155x_{66} = 75.398223686155
x67=84.8230016469244x_{67} = -84.8230016469244
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to sin(x)*(x^2 + 3).
(02+3)sin(0)\left(0^{2} + 3\right) \sin{\left(0 \right)}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
2xsin(x)+(x2+3)cos(x)=02 x \sin{\left(x \right)} + \left(x^{2} + 3\right) \cos{\left(x \right)} = 0
Solve this equation
The roots of this equation
x1=51.8747712151257x_{1} = -51.8747712151257
x2=70.7140931289331x_{2} = -70.7140931289331
x3=17.3921364947438x_{3} = 17.3921364947438
x4=80.135553551012x_{4} = -80.135553551012
x5=64.4336567231008x_{5} = -64.4336567231008
x6=39.3206300098787x_{6} = -39.3206300098787
x7=61.2936489726992x_{7} = 61.2936489726992
x8=92.6985477188943x_{8} = 92.6985477188943
x9=98.9803656834899x_{9} = 98.9803656834899
x10=67.573811263755x_{10} = -67.573811263755
x11=73.8544861451257x_{11} = -73.8544861451257
x12=67.573811263755x_{12} = 67.573811263755
x13=29.9116719072751x_{13} = -29.9116719072751
x14=8.08620023474585x_{14} = -8.08620023474585
x15=89.5577105390911x_{15} = 89.5577105390911
x16=14.2743775435397x_{16} = -14.2743775435397
x17=55.014173750457x_{17} = -55.014173750457
x18=45.5968649653267x_{18} = 45.5968649653267
x19=55.014173750457x_{19} = 55.014173750457
x20=48.7356491570733x_{20} = -48.7356491570733
x21=73.8544861451257x_{21} = 73.8544861451257
x22=95.8394343320789x_{22} = -95.8394343320789
x23=76.9949767639905x_{23} = -76.9949767639905
x24=11.1686903887487x_{24} = -11.1686903887487
x25=33.0470038069223x_{25} = 33.0470038069223
x26=95.8394343320789x_{26} = 95.8394343320789
x27=5.05280036176264x_{27} = 5.05280036176264
x28=70.7140931289331x_{28} = 70.7140931289331
x29=139.815174513663x_{29} = -139.815174513663
x30=20.5168427394902x_{30} = 20.5168427394902
x31=42.4584927718185x_{31} = -42.4584927718185
x32=61.2936489726992x_{32} = -61.2936489726992
x33=33.0470038069223x_{33} = -33.0470038069223
x34=20.5168427394902x_{34} = -20.5168427394902
x35=51.8747712151257x_{35} = 51.8747712151257
x36=5.05280036176264x_{36} = -5.05280036176264
x37=36.1834073007459x_{37} = -36.1834073007459
x38=26.7777784687197x_{38} = 26.7777784687197
x39=98.9803656834899x_{39} = -98.9803656834899
x40=58.1538116514278x_{40} = -58.1538116514278
x41=14.2743775435397x_{41} = 14.2743775435397
x42=48.7356491570733x_{42} = 48.7356491570733
x43=2.08694849327138x_{43} = -2.08694849327138
x44=23.6458771958085x_{44} = 23.6458771958085
x45=83.2762067890928x_{45} = -83.2762067890928
x46=86.4169281680532x_{46} = 86.4169281680532
x47=45.5968649653267x_{47} = -45.5968649653267
x48=8.08620023474585x_{48} = 8.08620023474585
x49=64.4336567231008x_{49} = 64.4336567231008
x50=42.4584927718185x_{50} = 42.4584927718185
x51=83.2762067890928x_{51} = 83.2762067890928
x52=23.6458771958085x_{52} = -23.6458771958085
x53=58.1538116514278x_{53} = 58.1538116514278
x54=2.08694849327138x_{54} = 2.08694849327138
x55=17.3921364947438x_{55} = -17.3921364947438
x56=92.6985477188943x_{56} = -92.6985477188943
x57=36.1834073007459x_{57} = 36.1834073007459
x58=86.4169281680532x_{58} = -86.4169281680532
x59=89.5577105390911x_{59} = -89.5577105390911
x60=11.1686903887487x_{60} = 11.1686903887487
x61=29.9116719072751x_{61} = 29.9116719072751
x62=26.7777784687197x_{62} = -26.7777784687197
x63=39.3206300098787x_{63} = 39.3206300098787
x64=76.9949767639905x_{64} = 76.9949767639905
x65=80.135553551012x_{65} = 80.135553551012
The values of the extrema at the points:
(-51.87477121512573, -2691.99633527749)

(-70.71409312893314, -5001.48536314231)

(17.39213649474379, -303.52510387424)

(-80.13555355101198, 6422.70880936104)

(-64.43365672310077, -4152.69900376829)

(-39.32063000987867, -1547.11966749316)

(61.2936489726992, -3757.91459199749)

(92.69854771889428, -8594.0221444295)

(98.98036568348985, -9798.11401473032)

(-67.57381126375503, 4567.22259229932)

(-73.85448614512573, 5455.48732069721)

(67.57381126375503, -4567.22259229932)

(-29.911671907275117, 895.721414590771)

(-8.086200234745847, -66.5510144264642)

(89.55771053909113, 8021.58501172545)

(-14.274377543539684, -204.814616709738)

(-55.01417375045699, 3027.56326832712)

(45.59686496532671, 2080.07984526547)

(55.01417375045699, -3027.56326832712)

(-48.7356491570733, 2376.16853479274)

(73.85448614512573, -5455.48732069721)

(-95.83943433207891, -9186.19847845327)

(-76.99497676399054, -5929.22846848739)

(-11.16869038874869, 125.830294133831)

(33.0470038069223, 1093.11537200813)

(95.83943433207891, 9186.19847845327)

(5.052800361762636, -26.8936203679094)

(70.71409312893314, 5001.48536314231)

(-139.8151745136635, -19549.2836379102)

(20.516842739490215, 421.968834187781)

(-42.458492771818506, 1803.7302368668)

(-61.2936489726992, 3757.91459199749)

(-33.0470038069223, -1093.11537200813)

(-20.516842739490215, -421.968834187781)

(51.87477121512573, 2691.99633527749)

(-5.052800361762636, 26.8936203679094)

(-36.18340730074592, 1310.24807618067)

(26.77777846871971, 718.065978041015)

(-98.98036568348985, 9798.11401473032)

(-58.1538116514278, -3382.8693499021)

(14.274377543539684, 204.814616709738)

(48.7356491570733, -2376.16853479274)

(-2.0869484932713838, -6.39713278797974)

(23.645877195808538, -560.148680302034)

(-83.27620678909281, -6935.92834564062)

(86.41692816805318, -7468.88707923516)

(-45.59686496532671, -2080.07984526547)

(8.086200234745847, 66.5510144264642)

(64.43365672310077, 4152.69900376829)

(42.458492771818506, -1803.7302368668)

(83.27620678909281, 6935.92834564062)

(-23.645877195808538, 560.148680302034)

(58.1538116514278, 3382.8693499021)

(2.0869484932713838, 6.39713278797974)

(-17.39213649474379, 303.52510387424)

(-92.69854771889428, 8594.0221444295)

(36.18340730074592, -1310.24807618067)

(-86.41692816805318, 7468.88707923516)

(-89.55771053909113, -8021.58501172545)

(11.16869038874869, -125.830294133831)

(29.911671907275117, -895.721414590771)

(-26.77777846871971, -718.065978041015)

(39.32063000987867, 1547.11966749316)

(76.99497676399054, 5929.22846848739)

(80.13555355101198, -6422.70880936104)


Intervals of increase and decrease of the function:
Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=51.8747712151257x_{1} = -51.8747712151257
x2=70.7140931289331x_{2} = -70.7140931289331
x3=17.3921364947438x_{3} = 17.3921364947438
x4=64.4336567231008x_{4} = -64.4336567231008
x5=39.3206300098787x_{5} = -39.3206300098787
x6=61.2936489726992x_{6} = 61.2936489726992
x7=92.6985477188943x_{7} = 92.6985477188943
x8=98.9803656834899x_{8} = 98.9803656834899
x9=67.573811263755x_{9} = 67.573811263755
x10=8.08620023474585x_{10} = -8.08620023474585
x11=14.2743775435397x_{11} = -14.2743775435397
x12=55.014173750457x_{12} = 55.014173750457
x13=73.8544861451257x_{13} = 73.8544861451257
x14=95.8394343320789x_{14} = -95.8394343320789
x15=76.9949767639905x_{15} = -76.9949767639905
x16=5.05280036176264x_{16} = 5.05280036176264
x17=139.815174513663x_{17} = -139.815174513663
x18=33.0470038069223x_{18} = -33.0470038069223
x19=20.5168427394902x_{19} = -20.5168427394902
x20=58.1538116514278x_{20} = -58.1538116514278
x21=48.7356491570733x_{21} = 48.7356491570733
x22=2.08694849327138x_{22} = -2.08694849327138
x23=23.6458771958085x_{23} = 23.6458771958085
x24=83.2762067890928x_{24} = -83.2762067890928
x25=86.4169281680532x_{25} = 86.4169281680532
x26=45.5968649653267x_{26} = -45.5968649653267
x27=42.4584927718185x_{27} = 42.4584927718185
x28=36.1834073007459x_{28} = 36.1834073007459
x29=89.5577105390911x_{29} = -89.5577105390911
x30=11.1686903887487x_{30} = 11.1686903887487
x31=29.9116719072751x_{31} = 29.9116719072751
x32=26.7777784687197x_{32} = -26.7777784687197
x33=80.135553551012x_{33} = 80.135553551012
Maxima of the function at points:
x33=80.135553551012x_{33} = -80.135553551012
x33=67.573811263755x_{33} = -67.573811263755
x33=73.8544861451257x_{33} = -73.8544861451257
x33=29.9116719072751x_{33} = -29.9116719072751
x33=89.5577105390911x_{33} = 89.5577105390911
x33=55.014173750457x_{33} = -55.014173750457
x33=45.5968649653267x_{33} = 45.5968649653267
x33=48.7356491570733x_{33} = -48.7356491570733
x33=11.1686903887487x_{33} = -11.1686903887487
x33=33.0470038069223x_{33} = 33.0470038069223
x33=95.8394343320789x_{33} = 95.8394343320789
x33=70.7140931289331x_{33} = 70.7140931289331
x33=20.5168427394902x_{33} = 20.5168427394902
x33=42.4584927718185x_{33} = -42.4584927718185
x33=61.2936489726992x_{33} = -61.2936489726992
x33=51.8747712151257x_{33} = 51.8747712151257
x33=5.05280036176264x_{33} = -5.05280036176264
x33=36.1834073007459x_{33} = -36.1834073007459
x33=26.7777784687197x_{33} = 26.7777784687197
x33=98.9803656834899x_{33} = -98.9803656834899
x33=14.2743775435397x_{33} = 14.2743775435397
x33=8.08620023474585x_{33} = 8.08620023474585
x33=64.4336567231008x_{33} = 64.4336567231008
x33=83.2762067890928x_{33} = 83.2762067890928
x33=23.6458771958085x_{33} = -23.6458771958085
x33=58.1538116514278x_{33} = 58.1538116514278
x33=2.08694849327138x_{33} = 2.08694849327138
x33=17.3921364947438x_{33} = -17.3921364947438
x33=92.6985477188943x_{33} = -92.6985477188943
x33=86.4169281680532x_{33} = -86.4169281680532
x33=39.3206300098787x_{33} = 39.3206300098787
x33=76.9949767639905x_{33} = 76.9949767639905
Decreasing at intervals
[98.9803656834899,)\left[98.9803656834899, \infty\right)
Increasing at intervals
(,139.815174513663]\left(-\infty, -139.815174513663\right]
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
4xcos(x)(x2+3)sin(x)+2sin(x)=04 x \cos{\left(x \right)} - \left(x^{2} + 3\right) \sin{\left(x \right)} + 2 \sin{\left(x \right)} = 0
Solve this equation
The roots of this equation
x1=28.4140196399608x_{1} = -28.4140196399608
x2=88.0100065677012x_{2} = -88.0100065677012
x3=3.90702807084788x_{3} = -3.90702807084788
x4=22.1693028254337x_{4} = 22.1693028254337
x5=1.10514981793379x_{5} = -1.10514981793379
x6=84.8700911234375x_{6} = 84.8700911234375
x7=88.0100065677012x_{7} = 88.0100065677012
x8=72.3118801171936x_{8} = 72.3118801171936
x9=44.0727618598357x_{9} = -44.0727618598357
x10=91.150037235664x_{10} = -91.150037235664
x11=22.1693028254337x_{11} = -22.1693028254337
x12=100.5707130471x_{12} = 100.5707130471
x13=6.80528625398069x_{13} = -6.80528625398069
x14=75.4511792321982x_{14} = -75.4511792321982
x15=81.7303041203085x_{15} = -81.7303041203085
x16=53.4817020607828x_{16} = -53.4817020607828
x17=50.3447369626727x_{17} = -50.3447369626727
x18=19.0559084163831x_{18} = -19.0559084163831
x19=66.0339328775789x_{19} = 66.0339328775789
x20=62.8953492343426x_{20} = -62.8953492343426
x21=78.5906608741787x_{21} = -78.5906608741787
x22=37.8044541008835x_{22} = 37.8044541008835
x23=15.9527156521893x_{23} = -15.9527156521893
x24=6.80528625398069x_{24} = 6.80528625398069
x25=75.4511792321982x_{25} = 75.4511792321982
x26=53.4817020607828x_{26} = 53.4817020607828
x27=9.80839967594854x_{27} = -9.80839967594854
x28=100.5707130471x_{28} = -100.5707130471
x29=94.290171661246x_{29} = -94.290171661246
x30=12.8660892168967x_{30} = -12.8660892168967
x31=34.6722827241199x_{31} = -34.6722827241199
x32=97.430399849257x_{32} = -97.430399849257
x33=81.7303041203085x_{33} = 81.7303041203085
x34=37.8044541008835x_{34} = -37.8044541008835
x35=19.0559084163831x_{35} = 19.0559084163831
x36=69.1727882185446x_{36} = 69.1727882185446
x37=34.6722827241199x_{37} = 34.6722827241199
x38=62.8953492343426x_{38} = 62.8953492343426
x39=44.0727618598357x_{39} = 44.0727618598357
x40=78.5906608741787x_{40} = 78.5906608741787
x41=59.7570797301442x_{41} = -59.7570797301442
x42=40.9380462292035x_{42} = 40.9380462292035
x43=59.7570797301442x_{43} = 59.7570797301442
x44=56.6191761012112x_{44} = 56.6191761012112
x45=25.2893699949369x_{45} = 25.2893699949369
x46=50.3447369626727x_{46} = 50.3447369626727
x47=31.5419431463056x_{47} = 31.5419431463056
x48=66.0339328775789x_{48} = -66.0339328775789
x49=15.9527156521893x_{49} = 15.9527156521893
x50=25.2893699949369x_{50} = -25.2893699949369
x51=12.8660892168967x_{51} = 12.8660892168967
x52=72.3118801171936x_{52} = -72.3118801171936
x53=91.150037235664x_{53} = 91.150037235664
x54=84.8700911234375x_{54} = -84.8700911234375
x55=3.90702807084788x_{55} = 3.90702807084788
x56=47.2083808903706x_{56} = 47.2083808903706
x57=28.4140196399608x_{57} = 28.4140196399608
x58=31.5419431463056x_{58} = -31.5419431463056
x59=94.290171661246x_{59} = 94.290171661246
x60=9.80839967594854x_{60} = 9.80839967594854
x61=47.2083808903706x_{61} = -47.2083808903706
x62=1.10514981793379x_{62} = 1.10514981793379
x63=97.430399849257x_{63} = 97.430399849257
x64=0x_{64} = 0
x65=69.1727882185446x_{65} = -69.1727882185446
x66=56.6191761012112x_{66} = -56.6191761012112
x67=40.9380462292035x_{67} = -40.9380462292035

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[97.430399849257,)\left[97.430399849257, \infty\right)
Convex at the intervals
(,97.430399849257]\left(-\infty, -97.430399849257\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx((x2+3)sin(x))=,\lim_{x \to -\infty}\left(\left(x^{2} + 3\right) \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=,y = \left\langle -\infty, \infty\right\rangle
limx((x2+3)sin(x))=,\lim_{x \to \infty}\left(\left(x^{2} + 3\right) \sin{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=,y = \left\langle -\infty, \infty\right\rangle
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of sin(x)*(x^2 + 3), divided by x at x->+oo and x ->-oo
limx((x2+3)sin(x)x)=,\lim_{x \to -\infty}\left(\frac{\left(x^{2} + 3\right) \sin{\left(x \right)}}{x}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
inclined asymptote equation on the left:
y=,xy = \left\langle -\infty, \infty\right\rangle x
limx((x2+3)sin(x)x)=,\lim_{x \to \infty}\left(\frac{\left(x^{2} + 3\right) \sin{\left(x \right)}}{x}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
inclined asymptote equation on the right:
y=,xy = \left\langle -\infty, \infty\right\rangle x
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
(x2+3)sin(x)=(x2+3)sin(x)\left(x^{2} + 3\right) \sin{\left(x \right)} = - \left(x^{2} + 3\right) \sin{\left(x \right)}
- No
(x2+3)sin(x)=(x2+3)sin(x)\left(x^{2} + 3\right) \sin{\left(x \right)} = \left(x^{2} + 3\right) \sin{\left(x \right)}
- No
so, the function
not is
neither even, nor odd