Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left(\sin^{2}{\left(x \right)} - 2 \sin{\left(x \right)}\right) + 1 = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = \frac{\pi}{2}$$
Numerical solution$$x_{1} = 70.6846901522759$$
$$x_{2} = -29.8448001384705$$
$$x_{3} = -73.8271871062847$$
$$x_{4} = 95.8191678819566$$
$$x_{5} = -67.5448127096766$$
$$x_{6} = -23.5624688735391$$
$$x_{7} = 58.1200311840253$$
$$x_{8} = 20.4198754083154$$
$$x_{9} = 1.57204027951788$$
$$x_{10} = -17.2799879444777$$
$$x_{11} = 7.85446803582028$$
$$x_{12} = -48.695589715671$$
$$x_{13} = 45.5543801721935$$
$$x_{14} = -61.2623265905076$$
$$x_{15} = -86.3926407020155$$
$$x_{16} = 26.7023509688056$$
$$x_{17} = -42.4103000063203$$
$$x_{18} = 64.4022201556448$$
$$x_{19} = -80.1102366603878$$
$$x_{20} = -4.71386903378524$$
$$x_{21} = -92.6773772080111$$
$$x_{22} = 89.5367196861079$$
$$x_{23} = 51.8368185218287$$
$$x_{24} = -36.1278836651147$$
$$x_{25} = 14.1376294337918$$