In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivativex2sin(x)cos(x)−x2sin2(x)=0Solve this equationThe roots of this equation
x1=−61.2528940466862x2=−86.3880101981266x3=53.4070751110265x4=72.2566310325652x5=−9.42477796076938x6=−59.6902604182061x7=42.3997088362447x8=20.3958423573092x9=14.1017251335659x10=−95.8133575027966x11=−114.663771308444x12=80.1043708909521x13=12.5663706143592x14=−14.1017251335659x15=95.8133575027966x16=−64.3948849627586x17=37.6991118430775x18=−23.5407082923052x19=64.3948849627586x20=−42.3997088362447x21=−20.3958423573092x22=58.1108600600615x23=7.78988375114457x24=67.5368388204916x25=15.707963267949x26=92.6715879363332x27=−97.3893722612836x28=−21.9911485751286x29=6.28318530717959x30=−83.2461991121237x31=−6.28318530717959x32=34.5575191894877x33=−51.8266315338985x34=−2678.20755049327x35=−125.663706143592x36=−94.2477796076938x37=−67.5368388204916x38=48.6844162648433x39=28.2743338823081x40=−31.4159265358979x41=59.6902604182061x42=−75.398223686155x43=−1.16556118520721x44=−81.6814089933346x45=−37.6991118430775x46=−1740.44233008875x47=197.920337176157x48=−80.1043708909521x49=−17.2497818346079x50=−7.78988375114457x51=−50.2654824574367x52=94.2477796076938x53=−29.8283692130955x54=36.1144715353049x55=56.5486677646163x56=−45.5421150692309x57=87.9645943005142x58=65.9734457253857x59=70.6787605627689x60=73.8206542907788x61=−53.4070751110265x62=43.9822971502571x63=86.3880101981266x64=−15.707963267949x65=−36.1144715353049x66=−62.8318530717959x67=−18.8495559215388x68=23.5407082923052x69=−89.5298059530594x70=45.5421150692309x71=−72.2566310325652x72=4.60421677720058x73=89.5298059530594x74=78.5398163397448x75=−73.8206542907788x76=29.8283692130955x77=−87.9645943005142x78=−43.9822971502571x79=26.6848024909251x80=21.9911485751286x81=−58.1108600600615x82=−10.9499436485412x83=51.8266315338985x84=81.6814089933346x85=−28.2743338823081x86=−65.9734457253857x87=50.2654824574367x88=100.530964914873x89=−39.2571723324086The values of the extrema at the points:
(-61.2528940466862, -0.0163246714689743)
(-86.3880101981266, -0.0115752926793239)
(53.4070751110265, 4.05057601793315e-32)
(72.2566310325652, 5.6146090061508e-31)
(-9.42477796076938, -1.43216509716637e-32)
(-59.6902604182061, -2.51765268789636e-32)
(42.3997088362447, 0.0235817882463307)
(20.3958423573092, 0.0490001524829528)
(14.1017251335659, 0.0708242711210408)
(-95.8133575027966, -0.0104366739072752)
(-114.663771308444, -0.00872098461732392)
(80.1043708909521, 0.0124832269403218)
(12.5663706143592, 1.90955346288849e-32)
(-14.1017251335659, -0.0708242711210408)
(95.8133575027966, 0.0104366739072752)
(-64.3948849627586, -0.0155282475514317)
(37.6991118430775, 5.72866038866547e-32)
(-23.5407082923052, -0.0424604502887016)
(64.3948849627586, 0.0155282475514317)
(-42.3997088362447, -0.0235817882463307)
(-20.3958423573092, -0.0490001524829528)
(58.1108600600615, 0.0172072134440586)
(7.78988375114457, 0.127844922574794)
(67.5368388204916, 0.0148059223769658)
(15.707963267949, 2.38694182861061e-32)
(92.6715879363332, 0.0107904797231539)
(-97.3893722612836, -4.83455425149761e-31)
(-21.9911485751286, -3.34171856005486e-32)
(6.28318530717959, 9.54776731444245e-33)
(-83.2461991121237, -0.0120121271188891)
(-6.28318530717959, -9.54776731444245e-33)
(34.5575191894877, 1.40770552330931e-31)
(-51.8266315338985, -0.0192933035363155)
(-2678.20755049327, -0.000373384043728018)
(-125.663706143592, -1.90955346288849e-31)
(-94.2477796076938, -1.24937720620631e-31)
(-67.5368388204916, -0.0148059223769658)
(48.6844162648433, 0.0205382874085413)
(28.2743338823081, 4.2964952914991e-32)
(-31.4159265358979, -4.77388365722123e-32)
(59.6902604182061, 2.51765268789636e-32)
(-75.398223686155, -1.14573207773309e-31)
(-1.16556118520721, -0.724611353776708)
(-81.6814089933346, -1.88255223925938e-31)
(-37.6991118430775, -5.72866038866547e-32)
(-1740.44233008875, -2.11977620970517e-30)
(197.920337176157, 4.37573096585357e-32)
(-80.1043708909521, -0.0124832269403218)
(-17.2497818346079, -0.0579230818110724)
(-7.78988375114457, -0.127844922574794)
(-50.2654824574367, -7.63821385155396e-32)
(94.2477796076938, 1.24937720620631e-31)
(-29.8283692130955, -0.0335157141235985)
(36.1144715353049, 0.0276844243853039)
(56.5486677646163, 8.59299058299821e-32)
(-45.5421150692309, -0.021955051448177)
(87.9645943005142, 1.33668742402194e-31)
(65.9734457253857, 1.45857698861786e-32)
(70.6787605627689, 0.0141478139878745)
(73.8206542907788, 0.0135457228854227)
(-53.4070751110265, -4.05057601793315e-32)
(43.9822971502571, 6.68343712010972e-32)
(86.3880101981266, 0.0115752926793239)
(-15.707963267949, -2.38694182861061e-32)
(-36.1144715353049, -0.0276844243853039)
(-62.8318530717959, -9.54776731444245e-32)
(-18.8495559215388, -2.86433019433273e-32)
(23.5407082923052, 0.0424604502887016)
(-89.5298059530594, -0.0111691162634939)
(45.5421150692309, 0.021955051448177)
(-72.2566310325652, -5.6146090061508e-31)
(4.60421677720058, 0.214660688386019)
(89.5298059530594, 0.0111691162634939)
(78.5398163397448, 3.07074756807772e-33)
(-73.8206542907788, -0.0135457228854227)
(29.8283692130955, 0.0335157141235985)
(-87.9645943005142, -1.33668742402194e-31)
(-43.9822971502571, -6.68343712010972e-32)
(26.6848024909251, 0.0374613617155508)
(21.9911485751286, 3.34171856005486e-32)
(-58.1108600600615, -0.0172072134440586)
(-10.9499436485412, -0.0911346506917966)
(51.8266315338985, 0.0192933035363155)
(81.6814089933346, 1.88255223925938e-31)
(-28.2743338823081, -4.2964952914991e-32)
(-65.9734457253857, -1.45857698861786e-32)
(50.2654824574367, 7.63821385155396e-32)
(100.530964914873, 1.52764277031079e-31)
(-39.2571723324086, -0.0254689206534694)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=−61.2528940466862x2=−86.3880101981266x3=53.4070751110265x4=72.2566310325652x5=−95.8133575027966x6=−114.663771308444x7=12.5663706143592x8=−14.1017251335659x9=−64.3948849627586x10=37.6991118430775x11=−23.5407082923052x12=−42.3997088362447x13=−20.3958423573092x14=15.707963267949x15=6.28318530717959x16=−83.2461991121237x17=34.5575191894877x18=−51.8266315338985x19=−2678.20755049327x20=−67.5368388204916x21=28.2743338823081x22=59.6902604182061x23=−1.16556118520721x24=197.920337176157x25=−80.1043708909521x26=−17.2497818346079x27=−7.78988375114457x28=94.2477796076938x29=−29.8283692130955x30=56.5486677646163x31=−45.5421150692309x32=87.9645943005142x33=65.9734457253857x34=43.9822971502571x35=−36.1144715353049x36=−89.5298059530594x37=78.5398163397448x38=−73.8206542907788x39=21.9911485751286x40=−58.1108600600615x41=−10.9499436485412x42=81.6814089933346x43=50.2654824574367x44=100.530964914873x45=−39.2571723324086Maxima of the function at points:
x45=−9.42477796076938x45=−59.6902604182061x45=42.3997088362447x45=20.3958423573092x45=14.1017251335659x45=80.1043708909521x45=95.8133575027966x45=64.3948849627586x45=58.1108600600615x45=7.78988375114457x45=67.5368388204916x45=92.6715879363332x45=−97.3893722612836x45=−21.9911485751286x45=−6.28318530717959x45=−125.663706143592x45=−94.2477796076938x45=48.6844162648433x45=−31.4159265358979x45=−75.398223686155x45=−81.6814089933346x45=−37.6991118430775x45=−1740.44233008875x45=−50.2654824574367x45=36.1144715353049x45=70.6787605627689x45=73.8206542907788x45=−53.4070751110265x45=86.3880101981266x45=−15.707963267949x45=−62.8318530717959x45=−18.8495559215388x45=23.5407082923052x45=45.5421150692309x45=−72.2566310325652x45=4.60421677720058x45=89.5298059530594x45=29.8283692130955x45=−87.9645943005142x45=−43.9822971502571x45=26.6848024909251x45=51.8266315338985x45=−28.2743338823081x45=−65.9734457253857Decreasing at intervals
[197.920337176157,∞)Increasing at intervals
(−∞,−2678.20755049327]