In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivativexcos(x)−x2sin(x)=0Solve this equationThe roots of this equation
x1=−10.9041216594289x2=−48.6741442319544x3=45.5311340139913x4=−26.6660542588127x5=−73.8138806006806x6=−17.2207552719308x7=−64.3871195905574x8=14.0661939128315x9=39.2444323611642x10=76.9560263103312x11=23.519452498689x12=−23.519452498689x13=51.8169824872797x14=−394.267341680887x15=58.1022547544956x16=54.9596782878889x17=83.2401924707234x18=36.1006222443756x19=−67.5294347771441x20=86.3822220347287x21=−70.6716857116195x22=−76.9560263103312x23=−32.9563890398225x24=26.6660542588127x25=−4.49340945790906x26=42.3879135681319x27=−95.8081387868617x28=−51.8169824872797x29=67.5294347771441x30=−20.3713029592876x31=−92.6661922776228x32=−86.3822220347287x33=−89.5242209304172x34=10.9041216594289x35=−98.9500628243319x36=17.2207552719308x37=−4355.81798462425x38=32.9563890398225x39=−45.5311340139913x40=−54.9596782878889x41=−80.0981286289451x42=80.0981286289451x43=−36.1006222443756x44=−14.0661939128315x45=−83.2401924707234x46=95.8081387868617x47=73.8138806006806x48=−39.2444323611642x49=−58.1022547544956x50=−42.3879135681319x51=−61.2447302603744x52=108.375719651675x53=92.6661922776228x54=4.49340945790906x55=61.2447302603744x56=48.6741442319544x57=98.9500628243319x58=−29.811598790893x59=20.3713029592876x60=89.5242209304172x61=29.811598790893x62=70.6716857116195x63=−7.72525183693771x64=7.72525183693771x65=64.3871195905574The values of the extrema at the points:
(-10.904121659428899, -0.0913252028230577)
(-48.674144231954386, -0.0205404540417537)
(45.53113401399128, 0.0219576982284824)
(-26.666054258812675, 0.0374745199939312)
(-73.81388060068065, -0.01354634434514)
(-17.22075527193077, -0.0579718023461539)
(-64.38711959055742, 0.0155291838074613)
(14.066193912831473, 0.0709134594504622)
(39.24443236116419, 0.0254730530928808)
(76.95602631033118, 0.0129933369870427)
(23.519452498689006, -0.0424796169776126)
(-23.519452498689006, -0.0424796169776126)
(51.81698248727967, 0.019295099487588)
(-394.26734168088706, -0.00253634191261283)
(58.10225475449559, 0.0172084874716279)
(54.959678287888934, -0.0181921463218031)
(83.2401924707234, 0.0120125604820527)
(36.10062224437561, -0.0276897323011492)
(-67.52943477714412, -0.0148067339465492)
(86.38222203472871, -0.0115756804584678)
(-70.6716857116195, 0.0141485220648664)
(-76.95602631033118, 0.0129933369870427)
(-32.956389039822476, 0.0303291711863103)
(26.666054258812675, 0.0374745199939312)
(-4.493409457909064, -0.217233628211222)
(42.38791356813192, -0.0235850682290164)
(-95.8081387868617, 0.0104369581345658)
(-51.81698248727967, 0.019295099487588)
(67.52943477714412, -0.0148067339465492)
(-20.37130295928756, 0.0490296240140742)
(-92.66619227762284, -0.0107907938495342)
(-86.38222203472871, -0.0115756804584678)
(-89.52422093041719, 0.0111694646341736)
(10.904121659428899, -0.0913252028230577)
(-98.95006282433188, -0.010105591736504)
(17.22075527193077, -0.0579718023461539)
(-4355.817984624248, 0.000229577998248987)
(32.956389039822476, 0.0303291711863103)
(-45.53113401399128, 0.0219576982284824)
(-54.959678287888934, -0.0181921463218031)
(-80.09812862894512, -0.012483713321779)
(80.09812862894512, -0.012483713321779)
(-36.10062224437561, -0.0276897323011492)
(-14.066193912831473, 0.0709134594504622)
(-83.2401924707234, 0.0120125604820527)
(95.8081387868617, 0.0104369581345658)
(73.81388060068065, -0.01354634434514)
(-39.24443236116419, 0.0254730530928808)
(-58.10225475449559, 0.0172084874716279)
(-42.38791356813192, -0.0235850682290164)
(-61.2447302603744, -0.0163257593209978)
(108.37571965167469, 0.00922676625078197)
(92.66619227762284, -0.0107907938495342)
(4.493409457909064, -0.217233628211222)
(61.2447302603744, -0.0163257593209978)
(48.674144231954386, -0.0205404540417537)
(98.95006282433188, -0.010105591736504)
(-29.81159879089296, -0.0335251350213988)
(20.37130295928756, 0.0490296240140742)
(89.52422093041719, 0.0111694646341736)
(29.81159879089296, -0.0335251350213988)
(70.6716857116195, 0.0141485220648664)
(-7.725251836937707, 0.128374553525899)
(7.725251836937707, 0.128374553525899)
(64.38711959055742, 0.0155291838074613)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=−10.9041216594289x2=−48.6741442319544x3=−73.8138806006806x4=−17.2207552719308x5=23.519452498689x6=−23.519452498689x7=−394.267341680887x8=54.9596782878889x9=36.1006222443756x10=−67.5294347771441x11=86.3822220347287x12=−4.49340945790906x13=42.3879135681319x14=67.5294347771441x15=−92.6661922776228x16=−86.3822220347287x17=10.9041216594289x18=−98.9500628243319x19=17.2207552719308x20=−54.9596782878889x21=−80.0981286289451x22=80.0981286289451x23=−36.1006222443756x24=73.8138806006806x25=−42.3879135681319x26=−61.2447302603744x27=92.6661922776228x28=4.49340945790906x29=61.2447302603744x30=48.6741442319544x31=98.9500628243319x32=−29.811598790893x33=29.811598790893Maxima of the function at points:
x33=45.5311340139913x33=−26.6660542588127x33=−64.3871195905574x33=14.0661939128315x33=39.2444323611642x33=76.9560263103312x33=51.8169824872797x33=58.1022547544956x33=83.2401924707234x33=−70.6716857116195x33=−76.9560263103312x33=−32.9563890398225x33=26.6660542588127x33=−95.8081387868617x33=−51.8169824872797x33=−20.3713029592876x33=−89.5242209304172x33=−4355.81798462425x33=32.9563890398225x33=−45.5311340139913x33=−14.0661939128315x33=−83.2401924707234x33=95.8081387868617x33=−39.2444323611642x33=−58.1022547544956x33=108.375719651675x33=20.3713029592876x33=89.5242209304172x33=70.6716857116195x33=−7.72525183693771x33=7.72525183693771x33=64.3871195905574Decreasing at intervals
[98.9500628243319,∞)Increasing at intervals
(−∞,−394.267341680887]