In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$\frac{1}{2 x} \cos{\left(x \right)} - \frac{\sin{\left(x \right)}}{2 x^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -4.49340945790906$$
$$x_{2} = 26.6660542588127$$
$$x_{3} = 86.3822220347287$$
$$x_{4} = -73.8138806006806$$
$$x_{5} = 95.8081387868617$$
$$x_{6} = -58.1022547544956$$
$$x_{7} = -86.3822220347287$$
$$x_{8} = -36.1006222443756$$
$$x_{9} = -95.8081387868617$$
$$x_{10} = -64.3871195905574$$
$$x_{11} = 4.49340945790906$$
$$x_{12} = -70.6716857116195$$
$$x_{13} = 64.3871195905574$$
$$x_{14} = -80.0981286289451$$
$$x_{15} = 108.375719651675$$
$$x_{16} = 36.1006222443756$$
$$x_{17} = -83.2401924707234$$
$$x_{18} = 70.6716857116195$$
$$x_{19} = -51.8169824872797$$
$$x_{20} = 23.519452498689$$
$$x_{21} = 10.9041216594289$$
$$x_{22} = -29.811598790893$$
$$x_{23} = 17.2207552719308$$
$$x_{24} = -48.6741442319544$$
$$x_{25} = 14.0661939128315$$
$$x_{26} = 39.2444323611642$$
$$x_{27} = -67.5294347771441$$
$$x_{28} = -4355.81798462425$$
$$x_{29} = 76.9560263103312$$
$$x_{30} = 42.3879135681319$$
$$x_{31} = 83.2401924707234$$
$$x_{32} = -7.72525183693771$$
$$x_{33} = -61.2447302603744$$
$$x_{34} = -42.3879135681319$$
$$x_{35} = 92.6661922776228$$
$$x_{36} = -394.267341680887$$
$$x_{37} = 7.72525183693771$$
$$x_{38} = 45.5311340139913$$
$$x_{39} = -17.2207552719308$$
$$x_{40} = 32.9563890398225$$
$$x_{41} = 29.811598790893$$
$$x_{42} = -23.519452498689$$
$$x_{43} = -45.5311340139913$$
$$x_{44} = 58.1022547544956$$
$$x_{45} = -26.6660542588127$$
$$x_{46} = -98.9500628243319$$
$$x_{47} = -14.0661939128315$$
$$x_{48} = 61.2447302603744$$
$$x_{49} = 20.3713029592876$$
$$x_{50} = 54.9596782878889$$
$$x_{51} = -76.9560263103312$$
$$x_{52} = -39.2444323611642$$
$$x_{53} = -20.3713029592876$$
$$x_{54} = 51.8169824872797$$
$$x_{55} = 48.6741442319544$$
$$x_{56} = 98.9500628243319$$
$$x_{57} = -89.5242209304172$$
$$x_{58} = 89.5242209304172$$
$$x_{59} = -10.9041216594289$$
$$x_{60} = 73.8138806006806$$
$$x_{61} = 67.5294347771441$$
$$x_{62} = -92.6661922776228$$
$$x_{63} = -32.9563890398225$$
$$x_{64} = 80.0981286289451$$
$$x_{65} = -54.9596782878889$$
The values of the extrema at the points:
(-4.493409457909064, -0.108616814105611)
(26.666054258812675, 0.0187372599969656)
(86.38222203472871, -0.00578784022923388)
(-73.81388060068065, -0.00677317217256998)
(95.8081387868617, 0.00521847906728291)
(-58.10225475449559, 0.00860424373581397)
(-86.38222203472871, -0.00578784022923388)
(-36.10062224437561, -0.0138448661505746)
(-95.8081387868617, 0.00521847906728291)
(-64.38711959055742, 0.00776459190373067)
(4.493409457909064, -0.108616814105611)
(-70.6716857116195, 0.00707426103243319)
(64.38711959055742, 0.00776459190373067)
(-80.09812862894512, -0.0062418566608895)
(108.37571965167469, 0.00461338312539098)
(36.10062224437561, -0.0138448661505746)
(-83.2401924707234, 0.00600628024102637)
(70.6716857116195, 0.00707426103243319)
(-51.81698248727967, 0.00964754974379398)
(23.519452498689006, -0.0212398084888063)
(10.904121659428899, -0.0456626014115288)
(-29.81159879089296, -0.0167625675106994)
(17.22075527193077, -0.0289859011730769)
(-48.674144231954386, -0.0102702270208769)
(14.066193912831473, 0.0354567297252311)
(39.24443236116419, 0.0127365265464404)
(-67.52943477714412, -0.00740336697327461)
(-4355.817984624248, 0.000114788999124493)
(76.95602631033118, 0.00649666849352136)
(42.38791356813192, -0.0117925341145082)
(83.2401924707234, 0.00600628024102637)
(-7.725251836937707, 0.0641872767629496)
(-61.2447302603744, -0.00816287966049891)
(-42.38791356813192, -0.0117925341145082)
(92.66619227762284, -0.00539539692476712)
(-394.26734168088706, -0.00126817095630642)
(7.725251836937707, 0.0641872767629496)
(45.53113401399128, 0.0109788491142412)
(-17.22075527193077, -0.0289859011730769)
(32.956389039822476, 0.0151645855931551)
(29.81159879089296, -0.0167625675106994)
(-23.519452498689006, -0.0212398084888063)
(-45.53113401399128, 0.0109788491142412)
(58.10225475449559, 0.00860424373581397)
(-26.666054258812675, 0.0187372599969656)
(-98.95006282433188, -0.00505279586825202)
(-14.066193912831473, 0.0354567297252311)
(61.2447302603744, -0.00816287966049891)
(20.37130295928756, 0.0245148120070371)
(54.959678287888934, -0.00909607316090157)
(-76.95602631033118, 0.00649666849352136)
(-39.24443236116419, 0.0127365265464404)
(-20.37130295928756, 0.0245148120070371)
(51.81698248727967, 0.00964754974379398)
(48.674144231954386, -0.0102702270208769)
(98.95006282433188, -0.00505279586825202)
(-89.52422093041719, 0.00558473231708678)
(89.52422093041719, 0.00558473231708678)
(-10.904121659428899, -0.0456626014115288)
(73.81388060068065, -0.00677317217256998)
(67.52943477714412, -0.00740336697327461)
(-92.66619227762284, -0.00539539692476712)
(-32.956389039822476, 0.0151645855931551)
(80.09812862894512, -0.0062418566608895)
(-54.959678287888934, -0.00909607316090157)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
$$x_{1} = -4.49340945790906$$
$$x_{2} = 86.3822220347287$$
$$x_{3} = -73.8138806006806$$
$$x_{4} = -86.3822220347287$$
$$x_{5} = -36.1006222443756$$
$$x_{6} = 4.49340945790906$$
$$x_{7} = -80.0981286289451$$
$$x_{8} = 36.1006222443756$$
$$x_{9} = 23.519452498689$$
$$x_{10} = 10.9041216594289$$
$$x_{11} = -29.811598790893$$
$$x_{12} = 17.2207552719308$$
$$x_{13} = -48.6741442319544$$
$$x_{14} = -67.5294347771441$$
$$x_{15} = 42.3879135681319$$
$$x_{16} = -61.2447302603744$$
$$x_{17} = -42.3879135681319$$
$$x_{18} = 92.6661922776228$$
$$x_{19} = -394.267341680887$$
$$x_{20} = -17.2207552719308$$
$$x_{21} = 29.811598790893$$
$$x_{22} = -23.519452498689$$
$$x_{23} = -98.9500628243319$$
$$x_{24} = 61.2447302603744$$
$$x_{25} = 54.9596782878889$$
$$x_{26} = 48.6741442319544$$
$$x_{27} = 98.9500628243319$$
$$x_{28} = -10.9041216594289$$
$$x_{29} = 73.8138806006806$$
$$x_{30} = 67.5294347771441$$
$$x_{31} = -92.6661922776228$$
$$x_{32} = 80.0981286289451$$
$$x_{33} = -54.9596782878889$$
Maxima of the function at points:
$$x_{33} = 26.6660542588127$$
$$x_{33} = 95.8081387868617$$
$$x_{33} = -58.1022547544956$$
$$x_{33} = -95.8081387868617$$
$$x_{33} = -64.3871195905574$$
$$x_{33} = -70.6716857116195$$
$$x_{33} = 64.3871195905574$$
$$x_{33} = 108.375719651675$$
$$x_{33} = -83.2401924707234$$
$$x_{33} = 70.6716857116195$$
$$x_{33} = -51.8169824872797$$
$$x_{33} = 14.0661939128315$$
$$x_{33} = 39.2444323611642$$
$$x_{33} = -4355.81798462425$$
$$x_{33} = 76.9560263103312$$
$$x_{33} = 83.2401924707234$$
$$x_{33} = -7.72525183693771$$
$$x_{33} = 7.72525183693771$$
$$x_{33} = 45.5311340139913$$
$$x_{33} = 32.9563890398225$$
$$x_{33} = -45.5311340139913$$
$$x_{33} = 58.1022547544956$$
$$x_{33} = -26.6660542588127$$
$$x_{33} = -14.0661939128315$$
$$x_{33} = 20.3713029592876$$
$$x_{33} = -76.9560263103312$$
$$x_{33} = -39.2444323611642$$
$$x_{33} = -20.3713029592876$$
$$x_{33} = 51.8169824872797$$
$$x_{33} = -89.5242209304172$$
$$x_{33} = 89.5242209304172$$
$$x_{33} = -32.9563890398225$$
Decreasing at intervals
$$\left[98.9500628243319, \infty\right)$$
Increasing at intervals
$$\left(-\infty, -394.267341680887\right]$$