Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\left(\left(2^{x} - 2^{- x}\right) \cos{\left(2^{x} - 2^{- x} \right)} - \left(2^{x} + 2^{- x}\right)^{2} \sin{\left(2^{x} - 2^{- x} \right)}\right) \log{\left(2 \right)}^{2} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -15.642575038131$$
$$x_{2} = -10.3760116164826$$
$$x_{3} = -10.9182834406143$$
$$x_{4} = -7.80130123820942$$
$$x_{5} = 6.23696576814218$$
$$x_{6} = 6.65178149689681$$
$$x_{7} = 1.86124490613172$$
$$x_{8} = 4.24447497474833$$
$$x_{9} = 8.17509262414085$$
$$x_{10} = -1.86124490613172$$
$$x_{11} = -9.50325064958158$$
$$x_{12} = -13.5028547999188$$
$$x_{13} = 11.5940109367472$$
$$x_{14} = 9.69589444346397$$
$$x_{15} = -5.73996891551499$$
$$x_{16} = 0$$
$$x_{17} = -3.98490342308995$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[1.86124490613172, \infty\right)$$
Convex at the intervals
$$\left(-\infty, -15.642575038131\right]$$