In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$- \frac{\cos{\left(x - 2 \right)}}{2 - x} + \frac{\sin{\left(2 - x \right)}}{\left(2 - x\right)^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 66.3871195905574$$
$$x_{2} = 110.375719651675$$
$$x_{3} = -52.9596782878889$$
$$x_{4} = -2.49340945790906$$
$$x_{5} = -18.3713029592876$$
$$x_{6} = 60.1022547544956$$
$$x_{7} = 31.811598790893$$
$$x_{8} = 25.519452498689$$
$$x_{9} = 75.8138806006806$$
$$x_{10} = 19.2207552719308$$
$$x_{11} = 53.8169824872797$$
$$x_{12} = 22.3713029592876$$
$$x_{13} = -84.3822220347287$$
$$x_{14} = -90.6661922776228$$
$$x_{15} = -62.3871195905574$$
$$x_{16} = -34.1006222443756$$
$$x_{17} = -37.2444323611642$$
$$x_{18} = -15.2207552719308$$
$$x_{19} = 91.5242209304172$$
$$x_{20} = 56.9596782878889$$
$$x_{21} = -5.72525183693771$$
$$x_{22} = -74.9560263103312$$
$$x_{23} = -49.8169824872797$$
$$x_{24} = 85.2401924707234$$
$$x_{25} = -65.5294347771441$$
$$x_{26} = 9.72525183693771$$
$$x_{27} = -27.811598790893$$
$$x_{28} = -78.0981286289451$$
$$x_{29} = 94.6661922776228$$
$$x_{30} = -71.8138806006806$$
$$x_{31} = -56.1022547544956$$
$$x_{32} = 34.9563890398225$$
$$x_{33} = 38.1006222443756$$
$$x_{34} = 41.2444323611642$$
$$x_{35} = 28.6660542588127$$
$$x_{36} = -4353.81798462425$$
$$x_{37} = 97.8081387868617$$
$$x_{38} = -87.5242209304172$$
$$x_{39} = -100.091966464908$$
$$x_{40} = -46.6741442319544$$
$$x_{41} = -40.3879135681319$$
$$x_{42} = -96.9500628243319$$
$$x_{43} = 100.950062824332$$
$$x_{44} = -12.0661939128315$$
$$x_{45} = 72.6716857116195$$
$$x_{46} = 78.9560263103312$$
$$x_{47} = -68.6716857116195$$
$$x_{48} = 12.9041216594289$$
$$x_{49} = 47.5311340139913$$
$$x_{50} = 50.6741442319544$$
$$x_{51} = -59.2447302603744$$
$$x_{52} = 63.2447302603744$$
$$x_{53} = 69.5294347771441$$
$$x_{54} = -24.6660542588127$$
$$x_{55} = 88.3822220347287$$
$$x_{56} = 82.0981286289451$$
$$x_{57} = -30.9563890398225$$
$$x_{58} = -392.267341680887$$
$$x_{59} = -93.8081387868617$$
$$x_{60} = -8.9041216594289$$
$$x_{61} = -43.5311340139913$$
$$x_{62} = -81.2401924707234$$
$$x_{63} = 16.0661939128315$$
$$x_{64} = 44.3879135681319$$
$$x_{65} = -21.519452498689$$
$$x_{66} = 6.49340945790906$$
The values of the extrema at the points:
(66.38711959055742, 0.0155291838074613)
(110.37571965167469, 0.00922676625078197)
(-52.959678287888934, -0.0181921463218031)
(-2.493409457909064, -0.217233628211222)
(-18.37130295928756, 0.0490296240140742)
(60.10225475449559, 0.0172084874716279)
(31.81159879089296, -0.0335251350213988)
(25.519452498689006, -0.0424796169776126)
(75.81388060068065, -0.01354634434514)
(19.22075527193077, -0.0579718023461539)
(53.81698248727967, 0.019295099487588)
(22.37130295928756, 0.0490296240140742)
(-84.38222203472871, -0.0115756804584678)
(-90.66619227762284, -0.0107907938495342)
(-62.38711959055741, 0.0155291838074613)
(-34.10062224437561, -0.0276897323011492)
(-37.24443236116419, 0.0254730530928808)
(-15.220755271930768, -0.0579718023461539)
(91.52422093041719, 0.0111694646341736)
(56.959678287888934, -0.0181921463218031)
(-5.725251836937707, 0.128374553525899)
(-74.95602631033118, 0.0129933369870427)
(-49.81698248727967, 0.019295099487588)
(85.2401924707234, 0.0120125604820527)
(-65.52943477714412, -0.0148067339465492)
(9.725251836937707, 0.128374553525899)
(-27.81159879089296, -0.0335251350213988)
(-78.09812862894512, -0.012483713321779)
(94.66619227762284, -0.0107907938495342)
(-71.81388060068065, -0.01354634434514)
(-56.10225475449559, 0.0172084874716279)
(34.956389039822476, 0.0303291711863103)
(38.10062224437561, -0.0276897323011492)
(41.24443236116419, 0.0254730530928808)
(28.666054258812675, 0.0374745199939312)
(-4353.817984624248, 0.000229577998248987)
(97.8081387868617, 0.0104369581345658)
(-87.52422093041719, 0.0111694646341736)
(-100.09196646490764, 0.00979462014674114)
(-46.674144231954386, -0.0205404540417537)
(-40.38791356813192, -0.0235850682290164)
(-96.95006282433188, -0.010105591736504)
(100.95006282433188, -0.010105591736504)
(-12.066193912831473, 0.0709134594504622)
(72.6716857116195, 0.0141485220648664)
(78.95602631033118, 0.0129933369870427)
(-68.6716857116195, 0.0141485220648664)
(12.904121659428899, -0.0913252028230577)
(47.53113401399128, 0.0219576982284824)
(50.674144231954386, -0.0205404540417537)
(-59.2447302603744, -0.0163257593209978)
(63.2447302603744, -0.0163257593209978)
(69.52943477714412, -0.0148067339465492)
(-24.666054258812675, 0.0374745199939312)
(88.38222203472871, -0.0115756804584678)
(82.09812862894512, -0.012483713321779)
(-30.956389039822476, 0.0303291711863103)
(-392.26734168088706, -0.00253634191261283)
(-93.8081387868617, 0.0104369581345658)
(-8.904121659428899, -0.0913252028230577)
(-43.53113401399128, 0.0219576982284824)
(-81.2401924707234, 0.0120125604820527)
(16.066193912831473, 0.0709134594504622)
(44.38791356813192, -0.0235850682290164)
(-21.519452498689006, -0.0424796169776126)
(6.493409457909064, -0.217233628211222)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
$$x_{1} = -52.9596782878889$$
$$x_{2} = -2.49340945790906$$
$$x_{3} = 31.811598790893$$
$$x_{4} = 25.519452498689$$
$$x_{5} = 75.8138806006806$$
$$x_{6} = 19.2207552719308$$
$$x_{7} = -84.3822220347287$$
$$x_{8} = -90.6661922776228$$
$$x_{9} = -34.1006222443756$$
$$x_{10} = -15.2207552719308$$
$$x_{11} = 56.9596782878889$$
$$x_{12} = -65.5294347771441$$
$$x_{13} = -27.811598790893$$
$$x_{14} = -78.0981286289451$$
$$x_{15} = 94.6661922776228$$
$$x_{16} = -71.8138806006806$$
$$x_{17} = 38.1006222443756$$
$$x_{18} = -46.6741442319544$$
$$x_{19} = -40.3879135681319$$
$$x_{20} = -96.9500628243319$$
$$x_{21} = 100.950062824332$$
$$x_{22} = 12.9041216594289$$
$$x_{23} = 50.6741442319544$$
$$x_{24} = -59.2447302603744$$
$$x_{25} = 63.2447302603744$$
$$x_{26} = 69.5294347771441$$
$$x_{27} = 88.3822220347287$$
$$x_{28} = 82.0981286289451$$
$$x_{29} = -392.267341680887$$
$$x_{30} = -8.9041216594289$$
$$x_{31} = 44.3879135681319$$
$$x_{32} = -21.519452498689$$
$$x_{33} = 6.49340945790906$$
Maxima of the function at points:
$$x_{33} = 66.3871195905574$$
$$x_{33} = 110.375719651675$$
$$x_{33} = -18.3713029592876$$
$$x_{33} = 60.1022547544956$$
$$x_{33} = 53.8169824872797$$
$$x_{33} = 22.3713029592876$$
$$x_{33} = -62.3871195905574$$
$$x_{33} = -37.2444323611642$$
$$x_{33} = 91.5242209304172$$
$$x_{33} = -5.72525183693771$$
$$x_{33} = -74.9560263103312$$
$$x_{33} = -49.8169824872797$$
$$x_{33} = 85.2401924707234$$
$$x_{33} = 9.72525183693771$$
$$x_{33} = -56.1022547544956$$
$$x_{33} = 34.9563890398225$$
$$x_{33} = 41.2444323611642$$
$$x_{33} = 28.6660542588127$$
$$x_{33} = -4353.81798462425$$
$$x_{33} = 97.8081387868617$$
$$x_{33} = -87.5242209304172$$
$$x_{33} = -100.091966464908$$
$$x_{33} = -12.0661939128315$$
$$x_{33} = 72.6716857116195$$
$$x_{33} = 78.9560263103312$$
$$x_{33} = -68.6716857116195$$
$$x_{33} = 47.5311340139913$$
$$x_{33} = -24.6660542588127$$
$$x_{33} = -30.9563890398225$$
$$x_{33} = -93.8081387868617$$
$$x_{33} = -43.5311340139913$$
$$x_{33} = -81.2401924707234$$
$$x_{33} = 16.0661939128315$$
Decreasing at intervals
$$\left[100.950062824332, \infty\right)$$
Increasing at intervals
$$\left(-\infty, -392.267341680887\right]$$