Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\sin^{2}{\left(\frac{25 x}{2} \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
$$x_{2} = \frac{2 \pi}{25}$$
Numerical solution$$x_{1} = -56.5486677499397$$
$$x_{2} = 0.753982199602512$$
$$x_{3} = 97.2637085762748$$
$$x_{4} = 42.725660123571$$
$$x_{5} = -1.75929190879406$$
$$x_{6} = -141.748660547724$$
$$x_{7} = -50.0141551045945$$
$$x_{8} = 10.304423928203$$
$$x_{9} = -83.4407008503107$$
$$x_{10} = 57.3026499301668$$
$$x_{11} = 48.254863188359$$
$$x_{12} = 90.7291958058807$$
$$x_{13} = -93.7451247572791$$
$$x_{14} = 172.661932265155$$
$$x_{15} = 96.2583989088317$$
$$x_{16} = 94.2477796115401$$
$$x_{17} = -94.4991070954677$$
$$x_{18} = 36.9451296617996$$
$$x_{19} = -1447.39456733061$$
$$x_{20} = -47.752208330728$$
$$x_{21} = 109.830079198561$$
$$x_{22} = 58.8106144744896$$
$$x_{23} = -76.9061881698451$$
$$x_{24} = -45.7415890334401$$
$$x_{25} = 0$$
$$x_{26} = -44.7362793712884$$
$$x_{27} = -2.76460156905577$$
$$x_{28} = -96.5097262603214$$
$$x_{29} = -95.2530891737639$$
$$x_{30} = -100.028310105788$$
$$x_{31} = 2.01061928976492$$
$$x_{32} = -31.1645990884335$$
$$x_{33} = 91.9858328692709$$