In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivative76x1cos(7x)−6x2sin(7x)=0Solve this equationThe roots of this equation
x1=−50.0406751517951x2=−43.7574312835751x3=−79.6615575304586x4=19.9705314013693x5=100.306361981441x6=80.1103579161908x7=−63.9535313393611x8=−13.6868769695517x9=−21.7658114885988x10=6.05541622401885x11=8.30032210778509x12=173.011877464559x13=−11.8914560672462x14=−17.7264072842518x15=−95.8183629466279x16=15.9310817494473x17=18.1752346633335x18=−6.05541622401885x19=48.2454641744854x20=−7.85138261255556x21=−72.031948236685x22=28.049206829016x23=96.2671628900941x24=88.1887623614173x25=2.00945627326164x26=−65.748735854334x27=78.3151562745643x28=−25.8051488063147x29=36.1277506303835x30=−77.8663558220856x31=26.253961276138x32=−15.9310817494473x33=58.1191129483684x34=−98.0623625730701x35=−87.7399622271952x36=−73.8271509280264x37=30.2932554779114x38=10.0959551016599x39=52.2846874079873x40=84.1495606988712x41=4.25879982727042x42=32.0884889694752x43=−29.8444463965395x44=85.9447615666809x45=−341.760341100684x46=89.9839627802295x47=−33.883718467298x48=−83.7007604479657x49=63.9535313393611x50=−99.8575621165067x51=41.9622155286474x52=74.2759515488275x53=−41.9622155286474x54=−69.7879443740829x55=−67.9927408510451x56=56.7727077692574x57=67.9927408510451x58=−2.00945627326164x59=46.0014487872405x60=−56.3239059544124x61=−46.0014487872405x62=−61.7095249827622x63=−39.7181932985428x64=62.1583263211096x65=−72.4807489415142x66=−81.9055593018343x67=22.2146293818087x68=−55.8751040935535x69=−85.9447615666809x70=−59.9143192716405x71=−37.9229731731142x72=−94.0231630779702x73=76.0711538349461x74=70.2367451931726x75=24.0098938727341x76=−28.049206829016x77=−19.9705314013693x78=54.0798961670661x79=−76.0711538349461x80=98.0623625730701x81=50.0406751517951x82=−91.779163018434x83=44.2062349690925x84=−47.7966612520415x85=−51.835885077988x86=72.031948236685x87=−3.80943632268752x88=92.2279630510011x89=−89.9839627802295x90=37.4741677776243x91=59.0167161900147x92=1728.10034714005x93=94.0231630779702x94=40.1669979901791x95=66.1975369092382x96=−24.0098938727341x97=14.1357232606188The values of the extrema at the points:
(-50.040675151795064, -0.00333061028850224)
(-43.75743128357506, -0.00380885654317239)
(-79.6615575304586, -0.00209218101980467)
(19.970531401369342, 0.00834541651512062)
(100.3063619814408, -0.00166157454366666)
(80.1103579161908, 0.00208046008035556)
(-63.95353133936111, 0.00260605235346723)
(-13.68687696955167, 0.0121764511569935)
(-21.76581148859875, 0.00765710375869415)
(6.055416224018845, -0.0275159129338524)
(8.300322107785085, 0.0200765687168993)
(173.01187746455872, -0.000963324670497339)
(-11.891456067246201, 0.0140146538957282)
(-17.726407284251824, -0.00940186310546161)
(-95.81836294662794, -0.00173940021834752)
(15.931081749447287, -0.0104613088305755)
(18.175234663333477, 0.00916970381438593)
(-6.055416224018845, -0.0275159129338524)
(48.245464174485434, -0.00345454104075334)
(-7.851382612555562, -0.0212241707087703)
(-72.03194823668503, 0.00231378357763722)
(28.049206829015997, 0.00594186160392913)
(96.2671628900941, 0.00173129110852122)
(88.18876236141728, 0.0018898830591425)
(2.0094562732616392, 0.0827323693588725)
(-65.74873585433403, 0.00253489699977008)
(78.31515627456432, 0.00212814986661164)
(-25.805148806314698, -0.00645856042298836)
(36.12775063038345, 0.00461322282136609)
(-77.86635582208555, -0.00214041590124719)
(26.253961276138043, 0.00634815438347758)
(-15.931081749447287, -0.0104613088305755)
(58.11911294836839, -0.00286766529513478)
(-98.06236257307013, 0.00169959692422771)
(-87.73996222719515, -0.00189955000572286)
(-73.82715092802644, 0.00225752114969546)
(30.293255477911444, -0.00550171352771523)
(10.095955101659928, 0.0165066090756774)
(52.28468740798735, 0.00318766454985892)
(84.14956069887116, -0.00198059770143643)
(4.258799827270423, -0.0391126575249652)
(32.088488969475215, -0.00519391907722712)
(-29.844446396539475, 0.00558444794353813)
(85.94476156668094, -0.00193922739894047)
(-341.7603411006841, -0.000487671131089389)
(89.98396278022946, 0.00185217956047062)
(-33.883718467298024, -0.00491873952841744)
(-83.70076044796572, 0.00199121755910715)
(63.95353133936111, 0.00260605235346723)
(-99.85756211650671, 0.00166904230967432)
(41.962215528647384, -0.00397180412744887)
(74.27595154882749, -0.00224388048790643)
(-41.962215528647384, -0.00397180412744887)
(-69.78794437408288, -0.00238818207030623)
(-67.99274085104514, -0.00245123665716453)
(56.77270776925742, 0.00293567359336773)
(67.99274085104514, -0.00245123665716453)
(-2.0094562732616392, 0.0827323693588725)
(46.0014487872405, 0.00362305682522757)
(-56.32390595441243, -0.00295906556471497)
(-46.0014487872405, 0.00362305682522757)
(-61.709524982762176, -0.00270081839254932)
(-39.71819329854276, 0.00419620266618035)
(62.158326321109584, 0.00268131779536268)
(-72.48074894151424, -0.00229945668851025)
(-81.90555930183429, 0.00203486081503426)
(22.214629381808667, -0.00750240833087585)
(-55.87510409355348, 0.00298283331435769)
(-85.94476156668094, -0.00193922739894047)
(-59.914319271640544, -0.00278174224344856)
(-37.92297317311419, 0.00439484223382984)
(-94.02316307797024, -0.00177261079965872)
(76.07115383494614, -0.00219092736703475)
(70.23674519317257, 0.00237292205764339)
(24.009893872734114, -0.00694145994527699)
(-28.049206829015997, 0.00594186160392913)
(-19.970531401369342, 0.00834541651512062)
(54.07989616706608, 0.00308184920794143)
(-76.07115383494614, -0.00219092736703475)
(98.06236257307013, 0.00169959692422771)
(50.040675151795064, -0.00333061028850224)
(-91.77916301843398, 0.00181595102076066)
(44.20623496909249, 0.00377018754292901)
(-47.79666125204154, 0.00348697833424961)
(-51.835885077988, -0.00321526358585061)
(72.03194823668503, 0.00231378357763722)
(-3.809436322687525, 0.043720273326253)
(92.22796305100107, -0.00180711425488056)
(-89.98396278022946, 0.00185217956047062)
(37.47416777762428, -0.00444747583530982)
(59.016716190014684, -0.00282405035631075)
(1728.1003471400488, 9.64450162706156e-5)
(94.02316307797024, -0.00177261079965872)
(40.16699799017913, -0.00414931712378136)
(66.19753690923824, -0.00251771117708913)
(-24.009893872734114, -0.00694145994527699)
(14.13572326061884, -0.0117898570259214)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
x1=−50.0406751517951x2=−43.7574312835751x3=−79.6615575304586x4=100.306361981441x5=6.05541622401885x6=173.011877464559x7=−17.7264072842518x8=−95.8183629466279x9=15.9310817494473x10=−6.05541622401885x11=48.2454641744854x12=−7.85138261255556x13=−25.8051488063147x14=−77.8663558220856x15=−15.9310817494473x16=58.1191129483684x17=−87.7399622271952x18=30.2932554779114x19=84.1495606988712x20=4.25879982727042x21=32.0884889694752x22=85.9447615666809x23=−341.760341100684x24=−33.883718467298x25=41.9622155286474x26=74.2759515488275x27=−41.9622155286474x28=−69.7879443740829x29=−67.9927408510451x30=67.9927408510451x31=−56.3239059544124x32=−61.7095249827622x33=−72.4807489415142x34=22.2146293818087x35=−85.9447615666809x36=−59.9143192716405x37=−94.0231630779702x38=76.0711538349461x39=24.0098938727341x40=−76.0711538349461x41=50.0406751517951x42=−51.835885077988x43=92.2279630510011x44=37.4741677776243x45=59.0167161900147x46=94.0231630779702x47=40.1669979901791x48=66.1975369092382x49=−24.0098938727341x50=14.1357232606188Maxima of the function at points:
x50=19.9705314013693x50=80.1103579161908x50=−63.9535313393611x50=−13.6868769695517x50=−21.7658114885988x50=8.30032210778509x50=−11.8914560672462x50=18.1752346633335x50=−72.031948236685x50=28.049206829016x50=96.2671628900941x50=88.1887623614173x50=2.00945627326164x50=−65.748735854334x50=78.3151562745643x50=36.1277506303835x50=26.253961276138x50=−98.0623625730701x50=−73.8271509280264x50=10.0959551016599x50=52.2846874079873x50=−29.8444463965395x50=89.9839627802295x50=−83.7007604479657x50=63.9535313393611x50=−99.8575621165067x50=56.7727077692574x50=−2.00945627326164x50=46.0014487872405x50=−46.0014487872405x50=−39.7181932985428x50=62.1583263211096x50=−81.9055593018343x50=−55.8751040935535x50=−37.9229731731142x50=70.2367451931726x50=−28.049206829016x50=−19.9705314013693x50=54.0798961670661x50=98.0623625730701x50=−91.779163018434x50=44.2062349690925x50=−47.7966612520415x50=72.031948236685x50=−3.80943632268752x50=−89.9839627802295x50=1728.10034714005Decreasing at intervals
[173.011877464559,∞)Increasing at intervals
(−∞,−341.760341100684]