Inclined asymptote can be found by calculating the limit of (sin(1)/2)*x, divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(1 \right)}}{2}\right) = \frac{\sin{\left(1 \right)}}{2}$$
Let's take the limitso,
inclined asymptote equation on the left:
$$y = \frac{x \sin{\left(1 \right)}}{2}$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(1 \right)}}{2}\right) = \frac{\sin{\left(1 \right)}}{2}$$
Let's take the limitso,
inclined asymptote equation on the right:
$$y = \frac{x \sin{\left(1 \right)}}{2}$$