Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$7^{\tan{\left(x \right)} \cot{\left(x \right)}} \left(\left(\left(\tan^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} - \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}\right)^{2} \log{\left(7 \right)} - 2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\cot^{2}{\left(x \right)} + 1\right) + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)} + 2 \left(\cot^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \cot{\left(x \right)}\right) \log{\left(7 \right)} = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections