Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$7 \left(- \frac{2 x \log{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{2}{x \left(x^{2} + 1\right)} - \frac{\operatorname{atan}{\left(x \right)}}{x^{2}}\right) = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections