Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{4 \left(7 - 2 x\right)^{\frac{2}{x - 3}} \left(- \frac{2}{\left(2 x - 7\right)^{2}} + \frac{\left(\frac{2}{2 x - 7} - \frac{\log{\left(7 - 2 x \right)}}{x - 3}\right)^{2}}{x - 3} - \frac{2}{\left(x - 3\right) \left(2 x - 7\right)} + \frac{\log{\left(7 - 2 x \right)}}{\left(x - 3\right)^{2}}\right)}{x - 3} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -50415.592773315$$
$$x_{2} = -54771.8531264758$$
$$x_{3} = -53684.2188785056$$
$$x_{4} = -31684.089326942$$
$$x_{5} = -39447.589149683$$
$$x_{6} = -56944.4262188582$$
$$x_{7} = 2.30150058684961$$
$$x_{8} = -37237.9135546137$$
$$x_{9} = -42751.1482885861$$
$$x_{10} = -38343.5230255027$$
$$x_{11} = -59113.5722496062$$
$$x_{12} = -43849.6412367176$$
$$x_{13} = -32798.5725460975$$
$$x_{14} = -33911.1051723028$$
$$x_{15} = -58029.4157142093$$
$$x_{16} = -35021.7823286231$$
$$x_{17} = -51506.1182746925$$
$$x_{18} = -41651.3439812066$$
$$x_{19} = -60196.918231627$$
$$x_{20} = -44946.8716074288$$
$$x_{21} = -40550.1761959289$$
$$x_{22} = -55858.5802535397$$
$$x_{23} = -49324.0416224826$$
$$x_{24} = -61279.4750351948$$
$$x_{25} = -52595.6501893341$$
$$x_{26} = -36130.6915423374$$
$$x_{27} = -47137.7247758638$$
$$x_{28} = -48231.4309207009$$
$$x_{29} = -46042.885137003$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 3$$
$$\lim_{x \to 3^-}\left(\frac{4 \left(7 - 2 x\right)^{\frac{2}{x - 3}} \left(- \frac{2}{\left(2 x - 7\right)^{2}} + \frac{\left(\frac{2}{2 x - 7} - \frac{\log{\left(7 - 2 x \right)}}{x - 3}\right)^{2}}{x - 3} - \frac{2}{\left(x - 3\right) \left(2 x - 7\right)} + \frac{\log{\left(7 - 2 x \right)}}{\left(x - 3\right)^{2}}\right)}{x - 3}\right) = 0.0976834074065823$$
$$\lim_{x \to 3^+}\left(\frac{4 \left(7 - 2 x\right)^{\frac{2}{x - 3}} \left(- \frac{2}{\left(2 x - 7\right)^{2}} + \frac{\left(\frac{2}{2 x - 7} - \frac{\log{\left(7 - 2 x \right)}}{x - 3}\right)^{2}}{x - 3} - \frac{2}{\left(x - 3\right) \left(2 x - 7\right)} + \frac{\log{\left(7 - 2 x \right)}}{\left(x - 3\right)^{2}}\right)}{x - 3}\right) = 0.0976834074065823$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[2.30150058684961, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 2.30150058684961\right]$$