Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\left(x + 2\right) e^{x} - 2 e^{x} + \frac{2 \left(x e^{x} + 1\right)}{\left(x + 1\right)^{2}}}{x + 1} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -33415.8037497305$$
$$x_{2} = -28330.187841268$$
$$x_{3} = -38501.422170149$$
$$x_{4} = -23244.5760938158$$
$$x_{5} = -30872.9954039089$$
$$x_{6} = -19854.1721532085$$
$$x_{7} = -24092.177650919$$
$$x_{8} = -18158.9720042003$$
$$x_{9} = -37653.818968837$$
$$x_{10} = -30025.392786181$$
$$x_{11} = -26634.9833453947$$
$$x_{12} = -17311.3725411143$$
$$x_{13} = -29177.7902624869$$
$$x_{14} = -16463.7735696055$$
$$x_{15} = -35958.6127125654$$
$$x_{16} = -34263.4066755697$$
$$x_{17} = -22396.9747395139$$
$$x_{18} = -19006.5718930801$$
$$x_{19} = -32568.2008920951$$
$$x_{20} = -39349.0254160413$$
$$x_{21} = -35111.0096646728$$
$$x_{22} = -20701.7727389755$$
$$x_{23} = -13073.3845178082$$
$$x_{24} = -12225.7896953671$$
$$x_{25} = -41044.2320305184$$
$$x_{26} = -31720.5981081316$$
$$x_{27} = -25787.3812935264$$
$$x_{28} = -21549.3736119485$$
$$x_{29} = -15616.1751697581$$
$$x_{30} = -14768.577440128$$
$$x_{31} = -40196.6287036936$$
$$x_{32} = -13920.9805037239$$
$$x_{33} = -41891.8353941377$$
$$x_{34} = -24939.779390143$$
$$x_{35} = -36806.2158151855$$
$$x_{36} = -27482.5855320072$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -1$$
$$\lim_{x \to -1^-}\left(\frac{\left(x + 2\right) e^{x} - 2 e^{x} + \frac{2 \left(x e^{x} + 1\right)}{\left(x + 1\right)^{2}}}{x + 1}\right) = -\infty$$
$$\lim_{x \to -1^+}\left(\frac{\left(x + 2\right) e^{x} - 2 e^{x} + \frac{2 \left(x e^{x} + 1\right)}{\left(x + 1\right)^{2}}}{x + 1}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = -1$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis