Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left(\left(x + 1\right) e^{x} + 1\right) e^{x} = 0$$
Solve this equationThe points of intersection with the axis X:
Numerical solution$$x_{1} = -102.872003083$$
$$x_{2} = -64.8720030830002$$
$$x_{3} = -36.8720060457829$$
$$x_{4} = -44.8720030845445$$
$$x_{5} = -92.8720030830002$$
$$x_{6} = -78.8720030830002$$
$$x_{7} = -106.872003083$$
$$x_{8} = -62.8720030830002$$
$$x_{9} = -110.872003083$$
$$x_{10} = -34.8720219445663$$
$$x_{11} = -48.8720030830335$$
$$x_{12} = -116.872003083$$
$$x_{13} = -104.872003083$$
$$x_{14} = -52.8720030830009$$
$$x_{15} = -58.8720030830002$$
$$x_{16} = -120.872003083$$
$$x_{17} = -118.872003083$$
$$x_{18} = -76.8720030830002$$
$$x_{19} = -32.8721200643545$$
$$x_{20} = -28.8759536128387$$
$$x_{21} = -46.8720030832278$$
$$x_{22} = -68.8720030830002$$
$$x_{23} = -72.8720030830002$$
$$x_{24} = -84.8720030830002$$
$$x_{25} = -56.8720030830002$$
$$x_{26} = -30.872702226286$$
$$x_{27} = -60.8720030830002$$
$$x_{28} = -100.872003083$$
$$x_{29} = -98.8720030830002$$
$$x_{30} = -94.8720030830002$$
$$x_{31} = -74.8720030830002$$
$$x_{32} = -50.872003083005$$
$$x_{33} = -88.8720030830002$$
$$x_{34} = -112.872003083$$
$$x_{35} = -108.872003083$$
$$x_{36} = -40.8720031522905$$
$$x_{37} = -54.8720030830003$$
$$x_{38} = -38.8720035394793$$
$$x_{39} = -114.872003083$$
$$x_{40} = -80.8720030830002$$
$$x_{41} = -42.8720030933943$$
$$x_{42} = -70.8720030830002$$
$$x_{43} = -66.8720030830002$$
$$x_{44} = -86.8720030830002$$
$$x_{45} = -90.8720030830002$$
$$x_{46} = -82.8720030830002$$
$$x_{47} = -96.8720030830002$$