Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left(1 - \tan{\left(x \right)}\right) \left(2^{x} + \log{\left(x \right)}\right) = 0$$
Solve this equationThe points of intersection with the axis X:
Numerical solution$$x_{1} = 16.4933614313464$$
$$x_{2} = -24.3473430653209$$
$$x_{3} = 41.6261026600648$$
$$x_{4} = -68.329640215578$$
$$x_{5} = -21.2057504117311$$
$$x_{6} = 32.2013246992954$$
$$x_{7} = -8.63937979737193$$
$$x_{8} = -43.1968989868597$$
$$x_{9} = -5.49778714378214$$
$$x_{10} = -30.6305283725005$$
$$x_{11} = -93.4623814442964$$
$$x_{12} = -77.7544181763474$$
$$x_{13} = -36.9137136796801$$
$$x_{14} = -96.6039740978861$$
$$x_{15} = 29.0597320457056$$
$$x_{16} = -52.621676947629$$
$$x_{17} = -55.7632696012188$$
$$x_{18} = 19.6349540849362$$
$$x_{19} = -84.037603483527$$
$$x_{20} = 25.9181393921158$$
$$x_{21} = -33.7721210260903$$
$$x_{22} = -58.9048622548086$$
$$x_{23} = -46.3384916404494$$
$$x_{24} = -2.35619449019234$$
$$x_{25} = -80.8960108299372$$
$$x_{26} = -87.1791961371168$$
$$x_{27} = -74.6128255227576$$
$$x_{28} = -71.4712328691678$$
$$x_{29} = -14.9225651045515$$
$$x_{30} = -18.0641577581413$$
$$x_{31} = -40.0553063332699$$
$$x_{32} = 13.3517687777566$$
$$x_{33} = -11.7809724509617$$
$$x_{34} = 38.484510006475$$
$$x_{35} = 44.7676953136546$$
$$x_{36} = 3.92699081698724$$
$$x_{37} = -49.4800842940392$$
$$x_{38} = -90.3207887907066$$
$$x_{39} = -27.4889357189107$$
$$x_{40} = 10.2101761241668$$
$$x_{41} = -62.0464549083984$$
$$x_{42} = -65.1880475619882$$
$$x_{43} = -99.7455667514759$$
$$x_{44} = 35.3429173528852$$