Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{- \frac{\left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right)}{x + 1} - \frac{2 \left(1 - \frac{x + 1}{x - 1}\right)}{x \left(x + 1\right)} + \frac{2 \log{\left(- \frac{x + 1}{x - 1} \right)}}{x^{2}}}{x} = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections