Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$e^{3 x + 1} \frac{x - 1}{3} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 1$$
Numerical solution$$x_{1} = -15.0684532551434$$
$$x_{2} = -100.891464090763$$
$$x_{3} = -96.8924798052928$$
$$x_{4} = -60.9079523700679$$
$$x_{5} = -106.890087328775$$
$$x_{6} = -92.8935860327674$$
$$x_{7} = -70.902004841254$$
$$x_{8} = -32.9459328554122$$
$$x_{9} = -13.1117508530767$$
$$x_{10} = -66.9041598631251$$
$$x_{11} = -24.9748914520213$$
$$x_{12} = -68.9030495676499$$
$$x_{13} = -76.8992106900462$$
$$x_{14} = -74.9000901450155$$
$$x_{15} = -54.9126249353434$$
$$x_{16} = -22.9858493249115$$
$$x_{17} = -88.8947954413616$$
$$x_{18} = -48.918524600458$$
$$x_{19} = -17.0384287747027$$
$$x_{20} = -56.9109514050207$$
$$x_{21} = -34.9409892536895$$
$$x_{22} = -46.9208513568803$$
$$x_{23} = -102.8909867729$$
$$x_{24} = -42.9262089003892$$
$$x_{25} = -26.9658032003852$$
$$x_{26} = -62.9066035286623$$
$$x_{27} = -36.9366344904773$$
$$x_{28} = -82.8968369889989$$
$$x_{29} = -44.9234015037324$$
$$x_{30} = -20.9993264203452$$
$$x_{31} = -94.8930208649533$$
$$x_{32} = -28.9581416011761$$
$$x_{33} = -98.8919613429433$$
$$x_{34} = 1$$
$$x_{35} = -50.9163930751628$$
$$x_{36} = -52.9144331692945$$
$$x_{37} = -30.9515939059262$$
$$x_{38} = -19.0163171160267$$
$$x_{39} = -90.8941769573876$$
$$x_{40} = -104.89052821385$$
$$x_{41} = -38.9327690324926$$
$$x_{42} = -72.9010200386809$$
$$x_{43} = -86.895443459527$$
$$x_{44} = -11.1803054802931$$
$$x_{45} = -84.8961231801092$$
$$x_{46} = -58.9093980525525$$
$$x_{47} = -80.8975875177835$$
$$x_{48} = -40.929314628757$$
$$x_{49} = -78.8983776762272$$
$$x_{50} = -64.9053421056098$$