Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\left(1 - \frac{x - 3}{x \log{\left(x \right)}}\right) \left(\frac{\log{\left(x \right)}}{x - 3} - \frac{1}{x}\right) + \left(x - 3\right) \left(- \frac{2 \log{\left(x \right)}}{\left(x - 3\right)^{2}} + \frac{2}{x \left(x - 3\right)} + \frac{1}{x^{2}}\right) + \frac{\log{\left(x \right)}}{x - 3} - \frac{\left(x - 3\right) \left(\frac{\log{\left(x \right)}}{x - 3} - \frac{1}{x}\right)}{x \log{\left(x \right)}} - \frac{1}{x}}{\log{\left(x \right)}^{2}} = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections