Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(\frac{d}{d x} \operatorname{sign}{\left(\frac{\log{\left(x^{2} \right)}}{\log{\left(10 \right)}} - 1 \right)} - \frac{\operatorname{sign}{\left(\frac{\log{\left(x^{2} \right)}}{\log{\left(10 \right)}} - 1 \right)}}{x}\right)}{x \log{\left(10 \right)}} = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections