Mister Exam

Other calculators

Graphing y = -0.5*(abs(\cos(4x+4))+1/3)/3arcctg(2x+3)+1/sqrt(2*x*x-5)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       /-(|cos(4*x + 4)| + 1/3) \                              
       |------------------------|                              
       \           2            /                       1      
f(x) = --------------------------*acot(2*x + 3) + -------------
                   3                                ___________
                                                  \/ 2*x*x - 5 
$$f{\left(x \right)} = \frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}}$$
f = ((-(Abs(cos(4*x + 4)) + 1/3)/2)/3)*acot(2*x + 3) + 1/(sqrt(x*(2*x) - 5))
The graph of the function
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = -1.58113883008419$$
$$x_{2} = 1.58113883008419$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}} = 0$$
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to ((-(Abs(cos(4*x + 4)) + 1/3)/2)/3)*acot(2*x + 3) + 1/(sqrt((2*x)*x - 5)).
$$\frac{\left(-1\right) \frac{1}{2} \left(\frac{1}{3} + \left|{\cos{\left(0 \cdot 4 + 4 \right)}}\right|\right)}{3} \operatorname{acot}{\left(0 \cdot 2 + 3 \right)} + \frac{1}{\sqrt{-5 + 0 \cdot 0 \cdot 2}}$$
The result:
$$f{\left(0 \right)} = \left(\frac{\cos{\left(4 \right)}}{6} - \frac{1}{18}\right) \operatorname{acot}{\left(3 \right)} - \frac{\sqrt{5} i}{5}$$
The point:
(0, (-1/18 + cos(4)/6)*acot(3) - i*sqrt(5)/5)
Vertical asymptotes
Have:
$$x_{1} = -1.58113883008419$$
$$x_{2} = 1.58113883008419$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}}\right) = \pi \left(- \frac{\left|{\left\langle -1, 1\right\rangle}\right|}{6} - \frac{1}{18}\right)$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = \pi \left(- \frac{\left|{\left\langle -1, 1\right\rangle}\right|}{6} - \frac{1}{18}\right)$$
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}}\right) = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = 0$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of ((-(Abs(cos(4*x + 4)) + 1/3)/2)/3)*acot(2*x + 3) + 1/(sqrt((2*x)*x - 5)), divided by x at x->+oo and x ->-oo
Limit on the left could not be calculated
$$\lim_{x \to -\infty}\left(\frac{\frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}}}{x}\right)$$
Limit on the right could not be calculated
$$\lim_{x \to \infty}\left(\frac{\frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}}}{x}\right)$$
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}} = - \left(- \frac{\left|{\cos{\left(4 x - 4 \right)}}\right|}{6} - \frac{1}{18}\right) \operatorname{acot}{\left(2 x - 3 \right)} + \frac{1}{\sqrt{2 x^{2} - 5}}$$
- No
$$\frac{\left(-1\right) \frac{1}{2} \left(\left|{\cos{\left(4 x + 4 \right)}}\right| + \frac{1}{3}\right)}{3} \operatorname{acot}{\left(2 x + 3 \right)} + \frac{1}{\sqrt{x 2 x - 5}} = \left(- \frac{\left|{\cos{\left(4 x - 4 \right)}}\right|}{6} - \frac{1}{18}\right) \operatorname{acot}{\left(2 x - 3 \right)} - \frac{1}{\sqrt{2 x^{2} - 5}}$$
- No
so, the function
not is
neither even, nor odd