Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$x \cos{\left(x \right)} + \sin{\left(x \right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 29.8785865061074$$
$$x_{2} = -76.9820093304187$$
$$x_{3} = -45.57503179559$$
$$x_{4} = -83.2642147040886$$
$$x_{5} = 80.1230928148503$$
$$x_{6} = -51.855560729152$$
$$x_{7} = 33.0170010333572$$
$$x_{8} = 7.97866571241324$$
$$x_{9} = -73.8409691490209$$
$$x_{10} = -7.97866571241324$$
$$x_{11} = 73.8409691490209$$
$$x_{12} = 0$$
$$x_{13} = -64.4181717218392$$
$$x_{14} = 36.1559664195367$$
$$x_{15} = 48.7152107175577$$
$$x_{16} = 2.02875783811043$$
$$x_{17} = 54.9960525574964$$
$$x_{18} = -11.085538406497$$
$$x_{19} = 20.469167402741$$
$$x_{20} = -17.3363779239834$$
$$x_{21} = 95.8290108090195$$
$$x_{22} = -36.1559664195367$$
$$x_{23} = 86.4053708116885$$
$$x_{24} = -80.1230928148503$$
$$x_{25} = -92.687771772017$$
$$x_{26} = -29.8785865061074$$
$$x_{27} = 11.085538406497$$
$$x_{28} = -86.4053708116885$$
$$x_{29} = -61.2773745335697$$
$$x_{30} = -39.295350981473$$
$$x_{31} = -23.6042847729804$$
$$x_{32} = -42.4350618814099$$
$$x_{33} = 17.3363779239834$$
$$x_{34} = 70.69997803861$$
$$x_{35} = -20.469167402741$$
$$x_{36} = -89.5465575382492$$
$$x_{37} = 26.7409160147873$$
$$x_{38} = -67.5590428388084$$
$$x_{39} = -70.69997803861$$
$$x_{40} = 39.295350981473$$
$$x_{41} = -95.8290108090195$$
$$x_{42} = 4.91318043943488$$
$$x_{43} = -48.7152107175577$$
$$x_{44} = 76.9820093304187$$
$$x_{45} = 98.9702722883957$$
$$x_{46} = 89.5465575382492$$
$$x_{47} = -4.91318043943488$$
$$x_{48} = 45.57503179559$$
$$x_{49} = 83.2642147040886$$
$$x_{50} = -98.9702722883957$$
$$x_{51} = 102.111554139654$$
$$x_{52} = 92.687771772017$$
$$x_{53} = 23.6042847729804$$
$$x_{54} = 42.4350618814099$$
$$x_{55} = -33.0170010333572$$
$$x_{56} = 61.2773745335697$$
$$x_{57} = 14.2074367251912$$
$$x_{58} = -54.9960525574964$$
$$x_{59} = 58.1366632448992$$
$$x_{60} = -14.2074367251912$$
$$x_{61} = -58.1366632448992$$
$$x_{62} = 51.855560729152$$
$$x_{63} = -26.7409160147873$$
$$x_{64} = 64.4181717218392$$
$$x_{65} = -2.02875783811043$$
$$x_{66} = 67.5590428388084$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[98.9702722883957, \infty\right)$$
Convex at the intervals
$$\left(-\infty, -98.9702722883957\right]$$