Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • x^2-x+2
  • (x^2+5)/(x-2)
  • (x^2-4x+1)/(x-4)
  • x^2-3x+2
  • Identical expressions

  • - two *x*atan(x^ seven)
  • minus 2 multiply by x multiply by arc tangent of gent of (x to the power of 7)
  • minus two multiply by x multiply by arc tangent of gent of (x to the power of seven)
  • -2*x*atan(x7)
  • -2*x*atanx7
  • -2*x*atan(x⁷)
  • -2xatan(x^7)
  • -2xatan(x7)
  • -2xatanx7
  • -2xatanx^7
  • Similar expressions

  • 2*x*atan(x^7)
  • -2*x*arctan(x^7)

Graphing y = -2*x*atan(x^7)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
                / 7\
f(x) = -2*x*atan\x /
f(x)=2xatan(x7)f{\left(x \right)} = - 2 x \operatorname{atan}{\left(x^{7} \right)}
f = (-2*x)*atan(x^7)
The graph of the function
02468-8-6-4-2-1010-5050
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
2xatan(x7)=0- 2 x \operatorname{atan}{\left(x^{7} \right)} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
Numerical solution
x1=0.00745707667942859x_{1} = -0.00745707667942859
x2=8.47862942312785105x_{2} = 8.47862942312785 \cdot 10^{-5}
x3=1.55298686811699105x_{3} = 1.55298686811699 \cdot 10^{-5}
x4=0.00357984125547394x_{4} = 0.00357984125547394
x5=0.000108914597124569x_{5} = -0.000108914597124569
x6=1.87360208899867105x_{6} = -1.87360208899867 \cdot 10^{-5}
x7=0x_{7} = 0
x8=0.000799364022669543x_{8} = 0.000799364022669543
x9=9.66971962656694105x_{9} = -9.66971962656694 \cdot 10^{-5}
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to (-2*x)*atan(x^7).
0atan(07)- 0 \operatorname{atan}{\left(0^{7} \right)}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
14x7x14+12atan(x7)=0- \frac{14 x^{7}}{x^{14} + 1} - 2 \operatorname{atan}{\left(x^{7} \right)} = 0
Solve this equation
The roots of this equation
x1=0x_{1} = 0
The values of the extrema at the points:
(0, 0)


Intervals of increase and decrease of the function:
Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
Maxima of the function at points:
x1=0x_{1} = 0
Decreasing at intervals
(,0]\left(-\infty, 0\right]
Increasing at intervals
[0,)\left[0, \infty\right)
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
28x6(7x14x14+14)x14+1=0\frac{28 x^{6} \left(\frac{7 x^{14}}{x^{14} + 1} - 4\right)}{x^{14} + 1} = 0
Solve this equation
The roots of this equation
x1=0x_{1} = 0
x2=27313143x_{2} = - \frac{\sqrt[7]{2} \cdot 3^{\frac{13}{14}}}{3}
x3=27313143x_{3} = \frac{\sqrt[7]{2} \cdot 3^{\frac{13}{14}}}{3}

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
(,27313143][27313143,)\left(-\infty, - \frac{\sqrt[7]{2} \cdot 3^{\frac{13}{14}}}{3}\right] \cup \left[\frac{\sqrt[7]{2} \cdot 3^{\frac{13}{14}}}{3}, \infty\right)
Convex at the intervals
[27313143,27313143]\left[- \frac{\sqrt[7]{2} \cdot 3^{\frac{13}{14}}}{3}, \frac{\sqrt[7]{2} \cdot 3^{\frac{13}{14}}}{3}\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(2xatan(x7))=\lim_{x \to -\infty}\left(- 2 x \operatorname{atan}{\left(x^{7} \right)}\right) = -\infty
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
limx(2xatan(x7))=\lim_{x \to \infty}\left(- 2 x \operatorname{atan}{\left(x^{7} \right)}\right) = -\infty
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of (-2*x)*atan(x^7), divided by x at x->+oo and x ->-oo
limx(2atan(x7))=π\lim_{x \to -\infty}\left(- 2 \operatorname{atan}{\left(x^{7} \right)}\right) = \pi
Let's take the limit
so,
inclined asymptote equation on the left:
y=πxy = \pi x
limx(2atan(x7))=π\lim_{x \to \infty}\left(- 2 \operatorname{atan}{\left(x^{7} \right)}\right) = - \pi
Let's take the limit
so,
inclined asymptote equation on the right:
y=πxy = - \pi x
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
2xatan(x7)=2xatan(x7)- 2 x \operatorname{atan}{\left(x^{7} \right)} = - 2 x \operatorname{atan}{\left(x^{7} \right)}
- No
2xatan(x7)=2xatan(x7)- 2 x \operatorname{atan}{\left(x^{7} \right)} = 2 x \operatorname{atan}{\left(x^{7} \right)}
- No
so, the function
not is
neither even, nor odd