Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{\left(2 x - 3\right) e^{x}}{4} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = \frac{3}{2}$$
Numerical solution$$x_{1} = -53.3759496325742$$
$$x_{2} = -69.2350405585825$$
$$x_{3} = -101.105362879064$$
$$x_{4} = -55.3525448459029$$
$$x_{5} = -81.1723542035891$$
$$x_{6} = -103.100276799833$$
$$x_{7} = -85.1560310834452$$
$$x_{8} = -39.6404760650587$$
$$x_{9} = -65.2622468163915$$
$$x_{10} = -37.7039270635681$$
$$x_{11} = -87.1485204030551$$
$$x_{12} = -95.1220841274421$$
$$x_{13} = -45.4986204818886$$
$$x_{14} = -71.2228229319478$$
$$x_{15} = -61.2939118937805$$
$$x_{16} = -77.1906807996878$$
$$x_{17} = -113.077853144863$$
$$x_{18} = -35.7794462611513$$
$$x_{19} = -91.1346357884748$$
$$x_{20} = -117.070073488174$$
$$x_{21} = -121.062861741813$$
$$x_{22} = -105.095408376221$$
$$x_{23} = -75.200715143261$$
$$x_{24} = -109.086270746787$$
$$x_{25} = -63.2774554894988$$
$$x_{26} = -73.2114067557342$$
$$x_{27} = -79.1812445627715$$
$$x_{28} = -57.3312461733115$$
$$x_{29} = -47.462553038273$$
$$x_{30} = -49.430492672938$$
$$x_{31} = -43.5395199022792$$
$$x_{32} = -111.081977383486$$
$$x_{33} = -107.09074388777$$
$$x_{34} = -51.4017952197327$$
$$x_{35} = -83.1639634344856$$
$$x_{36} = -89.1413984890304$$
$$x_{37} = -67.2481479021583$$
$$x_{38} = -115.073888205425$$
$$x_{39} = -59.3117781587306$$
$$x_{40} = -97.1162493536177$$
$$x_{41} = -93.1282056820621$$
$$x_{42} = -41.5863271755069$$
$$x_{43} = -33.8710922394818$$
$$x_{44} = -119.066400594498$$
$$x_{45} = -99.1106815979612$$
$$x_{46} = -31.985128603532$$
$$x_{47} = 1.5$$