Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left(3 x - 1\right) e^{2 x} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = \frac{1}{3}$$
Numerical solution$$x_{1} = -110.416310974892$$
$$x_{2} = -68.4500172487845$$
$$x_{3} = -92.4267460228373$$
$$x_{4} = -84.4329205190751$$
$$x_{5} = -98.4228163403679$$
$$x_{6} = -22.6887623052177$$
$$x_{7} = -60.4623384886379$$
$$x_{8} = -28.6006089158753$$
$$x_{9} = -96.4240683206509$$
$$x_{10} = -80.4365054269504$$
$$x_{11} = -94.4253769044588$$
$$x_{12} = -46.4956730853553$$
$$x_{13} = -70.4474155544769$$
$$x_{14} = -38.5277393441365$$
$$x_{15} = 0.333333333333333$$
$$x_{16} = -78.4384463713268$$
$$x_{17} = -26.6240010759403$$
$$x_{18} = -100.421617365979$$
$$x_{19} = -32.5647119949829$$
$$x_{20} = -24.652690459764$$
$$x_{21} = -62.4589301577232$$
$$x_{22} = -64.4557555304306$$
$$x_{23} = -72.4449706320723$$
$$x_{24} = -18.799182827935$$
$$x_{25} = -48.4895582087041$$
$$x_{26} = -44.5024284496071$$
$$x_{27} = -88.4296834978186$$
$$x_{28} = -74.4426687057238$$
$$x_{29} = -30.5811547527309$$
$$x_{30} = -20.7356064222698$$
$$x_{31} = -40.5183129223048$$
$$x_{32} = -106.418306804693$$
$$x_{33} = -76.4404975698536$$
$$x_{34} = -42.5099310545418$$
$$x_{35} = -54.4742566602746$$
$$x_{36} = -82.4346660697825$$
$$x_{37} = -66.4527913225207$$
$$x_{38} = -34.5506259310355$$
$$x_{39} = -86.4312617697132$$
$$x_{40} = -52.4789160390617$$
$$x_{41} = -56.4699679941209$$
$$x_{42} = -102.420468098628$$
$$x_{43} = -16.8912311472273$$
$$x_{44} = -108.417289418322$$
$$x_{45} = -90.4281799798262$$
$$x_{46} = -104.419365507828$$
$$x_{47} = -50.4839965457736$$
$$x_{48} = -58.4660073834065$$
$$x_{49} = -36.5384201495272$$