Mister Exam

Graphing y = -ctg(pix)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
f(x) = -cot(pi*x)
f(x)=cot(πx)f{\left(x \right)} = - \cot{\left(\pi x \right)}
f = -cot(pi*x)
The graph of the function
02468-8-6-4-2-1010-10000000000000001000000000000000
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
cot(πx)=0- \cot{\left(\pi x \right)} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=12x_{1} = \frac{1}{2}
Numerical solution
x1=0.5x_{1} = 0.5
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to -cot(pi*x).
(1)~\left(-1\right) \tilde{\infty}
The result:
f(0)=~f{\left(0 \right)} = \tilde{\infty}
sof doesn't intersect Y
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
π(cot2(πx)1)=0- \pi \left(- \cot^{2}{\left(\pi x \right)} - 1\right) = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
2π2(cot2(πx)+1)cot(πx)=0- 2 \pi^{2} \left(\cot^{2}{\left(\pi x \right)} + 1\right) \cot{\left(\pi x \right)} = 0
Solve this equation
The roots of this equation
x1=12x_{1} = \frac{1}{2}

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[12,)\left[\frac{1}{2}, \infty\right)
Convex at the intervals
(,12]\left(-\infty, \frac{1}{2}\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(cot(πx))=,\lim_{x \to -\infty}\left(- \cot{\left(\pi x \right)}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=,y = \left\langle -\infty, \infty\right\rangle
limx(cot(πx))=,\lim_{x \to \infty}\left(- \cot{\left(\pi x \right)}\right) = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=,y = \left\langle -\infty, \infty\right\rangle
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of -cot(pi*x), divided by x at x->+oo and x ->-oo
limx(cot(πx)x)=limx(cot(πx)x)\lim_{x \to -\infty}\left(- \frac{\cot{\left(\pi x \right)}}{x}\right) = \lim_{x \to -\infty}\left(- \frac{\cot{\left(\pi x \right)}}{x}\right)
Let's take the limit
so,
inclined asymptote equation on the left:
y=xlimx(cot(πx)x)y = x \lim_{x \to -\infty}\left(- \frac{\cot{\left(\pi x \right)}}{x}\right)
limx(cot(πx)x)=limx(cot(πx)x)\lim_{x \to \infty}\left(- \frac{\cot{\left(\pi x \right)}}{x}\right) = \lim_{x \to \infty}\left(- \frac{\cot{\left(\pi x \right)}}{x}\right)
Let's take the limit
so,
inclined asymptote equation on the right:
y=xlimx(cot(πx)x)y = x \lim_{x \to \infty}\left(- \frac{\cot{\left(\pi x \right)}}{x}\right)
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
cot(πx)=cot(πx)- \cot{\left(\pi x \right)} = \cot{\left(\pi x \right)}
- No
cot(πx)=cot(πx)- \cot{\left(\pi x \right)} = - \cot{\left(\pi x \right)}
- Yes
so, the function
is
odd
The graph
Graphing y = -ctg(pix)