Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{10 \left(2 x - \left(x + 14\right) \left(\left(x + 1\right) \left(\frac{1}{x + 6} + \frac{1}{x - 4}\right) + \frac{x + 1}{x + 6} - 1 + \frac{x + 1}{x - 4}\right) + 2\right)}{\left(x - 4\right)^{2} \left(x + 6\right)^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -14 - 6 \sqrt[3]{12} - 4 \sqrt[3]{18}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -6$$
$$x_{2} = 4$$
$$\lim_{x \to -6^-}\left(\frac{10 \left(2 x - \left(x + 14\right) \left(\left(x + 1\right) \left(\frac{1}{x + 6} + \frac{1}{x - 4}\right) + \frac{x + 1}{x + 6} - 1 + \frac{x + 1}{x - 4}\right) + 2\right)}{\left(x - 4\right)^{2} \left(x + 6\right)^{2}}\right) = -\infty$$
$$\lim_{x \to -6^+}\left(\frac{10 \left(2 x - \left(x + 14\right) \left(\left(x + 1\right) \left(\frac{1}{x + 6} + \frac{1}{x - 4}\right) + \frac{x + 1}{x + 6} - 1 + \frac{x + 1}{x - 4}\right) + 2\right)}{\left(x - 4\right)^{2} \left(x + 6\right)^{2}}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = -6$$
- is an inflection point
$$\lim_{x \to 4^-}\left(\frac{10 \left(2 x - \left(x + 14\right) \left(\left(x + 1\right) \left(\frac{1}{x + 6} + \frac{1}{x - 4}\right) + \frac{x + 1}{x + 6} - 1 + \frac{x + 1}{x - 4}\right) + 2\right)}{\left(x - 4\right)^{2} \left(x + 6\right)^{2}}\right) = \infty$$
$$\lim_{x \to 4^+}\left(\frac{10 \left(2 x - \left(x + 14\right) \left(\left(x + 1\right) \left(\frac{1}{x + 6} + \frac{1}{x - 4}\right) + \frac{x + 1}{x + 6} - 1 + \frac{x + 1}{x - 4}\right) + 2\right)}{\left(x - 4\right)^{2} \left(x + 6\right)^{2}}\right) = -\infty$$
- the limits are not equal, so
$$x_{2} = 4$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, -14 - 6 \sqrt[3]{12} - 4 \sqrt[3]{18}\right]$$
Convex at the intervals
$$\left[-14 - 6 \sqrt[3]{12} - 4 \sqrt[3]{18}, \infty\right)$$