Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$- \left(\frac{x + 7}{x}\right)^{\frac{13}{2}} \left|{x - 25}\right| + \frac{\log{\left(x + 10 \right)}}{\log{\left(15 \right)}} = 0$$
Solve this equationThe points of intersection with the axis X:
Numerical solution$$x_{1} = -8.99482842928553$$
$$x_{2} = -8.99482842928573$$
$$x_{3} = -8.99482842928543$$
$$x_{4} = -8.99482842928432$$
$$x_{5} = -8.9948284292855$$
$$x_{6} = -8.99482842928557$$
$$x_{7} = 24.7405918283319$$
$$x_{8} = 25.2684484737108$$
$$x_{9} = -8.99482842928554$$