The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0 so we need to solve the equation: log(x−x2+1)=0 Solve this equation Solution is not found, it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0: substitute x = 0 to log(x - sqrt(x^2 + 1)). log(−02+1) The result: f(0)=iπ The point:
(0, pi*i)
Extrema of the function
In order to find the extrema, we need to solve the equation dxdf(x)=0 (the derivative equals zero), and the roots of this equation are the extrema of this function: dxdf(x)= the first derivative x−x2+1−x2+1x+1=0 Solve this equation Solutions are not found, function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this dx2d2f(x)=0 (the second derivative equals zero), the roots of this equation will be the inflection points for the specified function graph: dx2d2f(x)= the second derivative x−x2+1x2+1x2+1x2−1−x−x2+1(x2+1x−1)2=0 Solve this equation The roots of this equation x1=0
Сonvexity and concavity intervals: Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points: Concave at the intervals [0,∞) Convex at the intervals (−∞,0]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo x→−∞limlog(x−x2+1)=∞ Let's take the limit so, horizontal asymptote on the left doesn’t exist x→∞limlog(x−x2+1)=−∞ Let's take the limit so, horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of log(x - sqrt(x^2 + 1)), divided by x at x->+oo and x ->-oo x→−∞lim(xlog(x−x2+1))=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the right x→∞lim(xlog(x−x2+1))=0 Let's take the limit so, inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x). So, check: log(x−x2+1)=log(−x−x2+1) - No log(x−x2+1)=−log(−x−x2+1) - No so, the function not is neither even, nor odd