Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$- \frac{\frac{\left(1 + \frac{1}{x^{2}}\right)^{2}}{x + 2 - \frac{1}{x}} + \frac{2}{x^{3}}}{\left(x + 2 - \frac{1}{x}\right) \log{\left(10 \right)}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -1$$
$$x_{2} = - \frac{\sqrt[3]{8 + 6 \sqrt{78}}}{3} + \frac{1}{3} + \frac{14}{3 \sqrt[3]{8 + 6 \sqrt{78}}}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$\lim_{x \to 0^-}\left(- \frac{\frac{\left(1 + \frac{1}{x^{2}}\right)^{2}}{x + 2 - \frac{1}{x}} + \frac{2}{x^{3}}}{\left(x + 2 - \frac{1}{x}\right) \log{\left(10 \right)}}\right) = \infty$$
$$\lim_{x \to 0^+}\left(- \frac{\frac{\left(1 + \frac{1}{x^{2}}\right)^{2}}{x + 2 - \frac{1}{x}} + \frac{2}{x^{3}}}{\left(x + 2 - \frac{1}{x}\right) \log{\left(10 \right)}}\right) = \infty$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[-1, - \frac{\sqrt[3]{8 + 6 \sqrt{78}}}{3} + \frac{1}{3} + \frac{14}{3 \sqrt[3]{8 + 6 \sqrt{78}}}\right]$$
Convex at the intervals
$$\left(-\infty, -1\right] \cup \left[- \frac{\sqrt[3]{8 + 6 \sqrt{78}}}{3} + \frac{1}{3} + \frac{14}{3 \sqrt[3]{8 + 6 \sqrt{78}}}, \infty\right)$$