Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\log{\left(\cot{\left(x \right)} \right)}^{\tan{\left(x \right)}} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = \frac{\pi}{4}$$
Numerical solution$$x_{1} = -18.0641577581413$$
$$x_{2} = -77.7544181763474$$
$$x_{3} = -90.3207887907066$$
$$x_{4} = 69.9004365423729$$
$$x_{5} = -99.7455667514759$$
$$x_{6} = -33.7721210260903$$
$$x_{7} = -55.7632696012188$$
$$x_{8} = 91.8915851175014$$
$$x_{9} = -24.3473430653209$$
$$x_{10} = 10.2101761241668$$
$$x_{11} = 54.1924732744239$$
$$x_{12} = -71.4712328691678$$
$$x_{13} = 60.4756585816035$$
$$x_{14} = 25.9181393921158$$
$$x_{15} = -84.037603483527$$
$$x_{16} = 76.1836218495525$$
$$x_{17} = -40.0553063332699$$
$$x_{18} = 98.174770424681$$
$$x_{19} = 3.92699081698724$$
$$x_{20} = -62.0464549083984$$
$$x_{21} = 32.2013246992954$$
$$x_{22} = 38.484510006475$$
$$x_{23} = 16.4933614313464$$
$$x_{24} = -49.4800842940392$$
$$x_{25} = -11.7809724509617$$
$$x_{26} = -27.4889357189107$$
$$x_{27} = 82.4668071567321$$
$$x_{28} = 47.9092879672443$$
$$x_{29} = -5.49778714378214$$