Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$- \frac{\left(9 - \frac{9 x - 1}{x + 2}\right) \left(\frac{9}{9 x - 1} + \frac{1}{x + 2}\right)}{\left(9 x - 1\right) \log{\left(3 \right)}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{17}{18}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -2$$
$$\lim_{x \to -2^-}\left(- \frac{\left(9 - \frac{9 x - 1}{x + 2}\right) \left(\frac{9}{9 x - 1} + \frac{1}{x + 2}\right)}{\left(9 x - 1\right) \log{\left(3 \right)}}\right) = \infty$$
$$\lim_{x \to -2^+}\left(- \frac{\left(9 - \frac{9 x - 1}{x + 2}\right) \left(\frac{9}{9 x - 1} + \frac{1}{x + 2}\right)}{\left(9 x - 1\right) \log{\left(3 \right)}}\right) = \infty$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \frac{17}{18}\right]$$
Convex at the intervals
$$\left[- \frac{17}{18}, \infty\right)$$